The search for efficient nontoxic catalysts able to perform industrial hydrogenations is a topic of interest, with relevance to many catalytic processes. Herein, we describe a mechanistic phenomenon for the activation and spillover of hydrogen for remarkable selectivity in the semi-hydrogenation of acetylene over sub-1 nm Pd nanoclusters confined within sodalite (SOD) zeolite (Pd@SOD). Specifically, hydrogen is dissociated on the Pd nanoclusters to form hydrogen species (i.e., hydrogen atoms and hydroxyl groups) that spill over the SOD surfaces. The design and utilization of the small-pore zeolite SOD (six-membered rings with 0.28×0.28 nm channels) is crucial as it only allows H diffusion into the channels to reach the encapsulated Pd nanoclusters and thus avoids over-hydrogenation to form ethane. Pd@SOD exhibits an ethylene selectivity of over 94.5 %, while that of conventional Pd/SOD is approximately 21.5 %.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201903827 | DOI Listing |
Vet Microbiol
January 2025
Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
Currently, there is increasing spillover of highly pathogenic H5N1 avian influenza virus (AIV) to mammals, raising a concern of pandemic threat about this virus. Although the function of PA protein of the influenza virus is well understood, the understanding of how phosphorylation regulates this protein and influenza viral life cycle is still limited. We previously identified PA S225 as the phosphorylation site in the highly pathogenic H5N1 AIV.
View Article and Find Full Text PDFJ Virol
January 2025
Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
Unlabelled: The genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry and Life Science, Yokohama National University, Yokohama, 240-8501, Japan.
Hydrogen spillover, particularly when involving "interparticle" hydrogen spillover, offers a unique opportunity to enhance catalytic efficiency by remote activation of surface acidity. Building on this concept, this study aims to investigate physically mixed alumina-supported platinum nanoparticles (Pt/AlO) and zirconia-supported tungsten oxide (WO/ZrO) in promoting the direct synthesis of cumene from benzene and propane at 300 °C. The reaction with Pt/AlO alone afforded propylene as the only product, indicating the successive reaction route of Pt-catalyzed dehydrogenation of propane, followed by acid-catalyzed alkylation.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Electrocatalytic gas-evolving reactions often result in bubble-covered surfaces, impeding the mass transfer to active sites. Such an issue will be worsened in practical high-current-density conditions and can cause sudden cell failure. Herein, we develop an on-chip microcell-based total-internal-reflection-fluorescence-microscopy to enable operando imaging of bubbles at sub-50 nm and dynamic probing of their nucleation during hydrogen evolution reaction.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
The ability to finely tune the nuclearity of active metal sites is critical for designing highly selective catalysts, especially for hydrogenation processes. In this work, we developed a novel PdCu catalyst with an ordered body-centered cubic (BCC) structure, enabling precise control over Pd nuclearity to optimize selectivity. Using a facile polyol synthesis method, we modulated the Pd coordination environment, reducing the Pd-Pd coordination number from 3 (disordered face-centered cubic, FCC) to 0 (ordered BCC), thereby achieving full isolation of Pd by the surrounding Cu atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!