Background: The search for early interventions is a novel approach in spinocerebellar ataxias, but there are few studies supporting this notion. This article aimed to assess the efficacy of neurorehabilitation treatment in prodromal spinocerebellar ataxia type 2.
Methods: Thirty spinocerebellar ataxia type 2 preclinical carriers were enrolled in a randomized, controlled trial using neurorehabilitation. The intervention in the treated group was 4 hours per day, 5 days per week for 12 weeks, emphasizing static balance, gait, and limb coordination. The control group did not receive rehabilitation. The primary outcome measure was the time for 5-m tandem gait over the floor. Secondary outcomes included other timed tests with increased motor complexity, as well as the scores of the SARA and the Inventory of Non-ataxia Symptoms.
Results: The times for 5-m tandem gait over the floor and the mattress were significantly reduced only in the rehabilitated group. Moreover, the times upholding the tandem stance over a mattress and the seesaw were notably increased only in this group. Likewise, the finger-nose and the heel-shin tests were improved in the rehabilitated group alone. The SARA score and the count of nonataxia symptoms were unchanged.
Conclusions: This rehabilitation program improves the subtle gait, postural and coordinative deficits in prodromal spinocerebellar ataxia type 2, which provided novel hints about the preservation of motor learning and neural plasticity mechanisms in early disease stages, leading chances for other interventional approaches in this and other spinocerebellar ataxias. © 2019 International Parkinson and Movement Disorder Society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.27676 | DOI Listing |
Neurobiol Dis
January 2025
Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While SCA8 patients have motor abnormalities, patients may also exhibit psychiatric symptoms and cognitive dysfunction. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms.
View Article and Find Full Text PDFParkinsonism Relat Disord
January 2025
Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy.
Segmental Brainstem Myoclonus (SBM) is a rare movement disorder characterized by rhythmic contractions of muscles innervated by brainstem segments. We report a 20-year-old patient with ADCK3-related spinocerebellar ataxia type 9 (SCAR9) presenting with sudden-onset myoclonic movements of the throat, tongue, and soft palate. Brain MRI showed stable findings, including dentate nucleus hyperintensities.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
Mov Disord
January 2025
Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia.
Proc Natl Acad Sci U S A
January 2025
Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!