Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Changes in starch in small structures are associated with key events during several plant developmental processes, including the reproductive phase from pollination to fertilization and the onset of fruiting. However, variations in starch during flower differentiation are not completely known, mainly due to the difficulty of quantifying the starch content in the particularly small structures of the flower primordia. Here, we describe a method for the quantification of starch in the ovary primordia of sweet cherry (Prunus avium L.) by using an image analysis system attached to the microscope, which allows relating the changes in starch content with the different phases of dormancy from autumn to spring. For this purpose, the dormancy status of flower buds is determined by evaluating the bud growth of shoots transferred to controlled conditions at different moments in winter time. For the quantification of starch in the ovary primordia, flower buds are sequentially collected, fixed, embedded in paraffin wax, sectioned, and stained with I2Kl (potassium iodide-iodine). Preparations are observed under the microscope and analyzed by an image analyzer that clearly distinguishes starch from the background. Starch content values are obtained by measuring the optical density of the image that corresponds to the stained starch, considering the sum of the optical density of each pixel as an estimation of the starch content of the frame studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/58524 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!