Bisphenol A (BPA) is a commonly used chemical in consumer products. It is an endocrine disrupter that has potentially significant negative effects on human health. The use and chemical stability of BPA have resulted in the appearance of the chemical in wastewaters. Since the current wastewater treatment technologies are not effective enough to remove BPA, new methods to degrade BPA are required. In this paper, we report the efforts made towards developing a bi-functional catalyst for consecutive catalytic wet air oxidation-photocatalytic water treatment. It was found that 2.5% Pt/TiCeO is a potential bi-functional catalyst for the consecutive treatment. Concentration and toxicity of BPA were successfully reduced by catalytic wet air oxidation. Although BPA was further reduced by photocatalysis, it was not reflected in further decrease of cell toxicity. Thus wet-air oxidation combined with photocatalysis is a promising approach for the reduction of BPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2019.1604817 | DOI Listing |
J Environ Manage
December 2024
Universidad Politécnica de Madrid (UPM), E.T.S de Ingenieros Industriales, Departamento de Ingeniería Química Industrial y del Medio Ambiente, c/José Gutiérrez Abascal 2, 28006, Madrid, Spain. Electronic address:
This work examines the photocatalytic capacity of FeO-TiO catalysts for inactivating Enterococcus faecalis in water and compares it to a peroxide-assisted process. The influence of HO, PMS, pH, and temperature is assessed. Material stability and free radical species involved in disinfection are also evaluated.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
The synthesis of polymer/oligomer-stabilized metal nanostructures (MNS) opens up a wide range of possibilities, from fundamental materials science to practical applications in domains such as medicine, catalysis, sensing, and energy. Because of the versatility of this synthetic approach, it is a dynamic and ever-changing field of study. These polymers/oligomers have precise control over the nucleation and growth kinetics, allowing the production of mono-disperse MNS with well-defined properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shanghai University, Department of Chemical Engineering, 99 Shangda Road, 200444, Shanghai, CHINA.
Developing ethanol oxidation electrocatalysts with high catalytic activity, durability, and resistance to CO poisoning remains a major challenge. High-entropy alloys (HEAs) with unique physical and chemical properties have garnered substantial attention. Herein, a class of HEA nanodendrites are designed by a simple wet-chemical method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Capital Normal University, Department of Chemistry, No. 105 Xisan Huan Bei Road, Haidian Dist. Beijing, CHINA.
Whether the catalyst can realize the non-CO pathway is the key to greatly improve the catalytic activity and stability of methanol oxidation reaction (MOR). It is feasible to optimize the reaction path selectivity by modifying organic ligands and constructing single-atom systems. At the same time, heterogeneous metal nanosheets with atomic thickness have been shown to significantly enhance the catalytic activity of materials due to their ultra-high exposure of active sites and synergistic effects.
View Article and Find Full Text PDFHeliyon
December 2024
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China.
CO RWGS reaction was considered to be a promising process for carbon dioxide conversion, however it retained a big challenge owing to methanation and metal sintering. Therefore, it was desperately needed to devise highly selective and stable catalyst. Herein, core-shell Ni/SiO@ZrO catalyst was successfully prepared via a combination of the wet impregnation and in-situ hydrothermal synthesis method, with ZrO as the coating shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!