A revised in situ base mechanism of alkyne alkoxycarbonylation via a Pd catalyst with hemilabile P,N-ligands (PyPPh2, Py = 2-pyridyl) has been fully characterised at the B3PW91-D3/PCM level of density functional theory. Key intermediates on this route are acryloyl and η3-propen-1-oyl complexes that readily undergo methanolysis. With two hemilabile P,N-ligands and one or both of them protonated, the overall computed barrier is 16.8 kcal mol-1. This new mechanism is consistent with all of the experimental data relating to substituent effects on relative reaction rates and branched/linear selectivities, including new results on the methoxycarbonylation of phenylacetylene using (4-Me2N-Py)PPh2 and (6-Cl-Py)PPh2 ligands. This ligand is found to decrease catalytic activity over PyPPh2, thus invalidating a formerly characterised in situ base mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp01471cDOI Listing

Publication Analysis

Top Keywords

alkyne alkoxycarbonylation
8
density functional
8
functional theory
8
situ base
8
base mechanism
8
hemilabile pn-ligands
8
palladium-catalysed alkyne
4
alkoxycarbonylation pn-chelating
4
pn-chelating ligands
4
ligands revisited
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!