Background: Several studies have shown that the incidence of benign paroxysmal positional vertigo (BPPV) presents seasonal variations and there is evidence that the variation in time is dependent on the patient's amount of vitamin D.

Objectives: This is a retrospective study to verify if there is a correlation between the incidence of BPPV and the level of solar radiation, essential for the synthesis of vitamin D in the skin.

Material And Methods: This study comprised 214 patients with BPPV seen from 2012 to 2017, in a city Latitude: -30.0277, Longitude: -51.2287 30° 1' 40″ South, 51° 13' 43″ West. The amounts of monthly solar radiation were analyzed in relation to the dates of their first consultations. Statistical tests were employed to verify the existence of a correlation between solar radiation and the incidence of the disease.

Results: The statistical analysis revealed a significant difference between the incidence of BPPV and the amount of radiation during the month of the diagnosis of the disease. There was also a significant statistical correlation with the climatic variation.

Conclusion: More patients with benign paroxysmal positional vertigo (BPPV) are seen in consultation in the months with low solar radiation and in the autumn and winter seasons, in this geographic city.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00016489.2019.1590636DOI Listing

Publication Analysis

Top Keywords

solar radiation
20
benign paroxysmal
12
paroxysmal positional
12
positional vertigo
12
vertigo bppv
8
incidence bppv
8
radiation
6
bppv
5
seasonality solar
4
radiation variation
4

Similar Publications

Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.

View Article and Find Full Text PDF

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

Sustainable upgrading of biomass: a thermodynamic approach to fine-tuning product selectivity for glycerol oxidation.

Chem Commun (Camb)

January 2025

Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

Calculated thermodynamic properties for the electrochemical glycerol oxidation at different temperatures and potentials indicate that external applied bias has a more significant influence on reaction selectivity than temperature.

View Article and Find Full Text PDF

Self-assembled monolayers (SAM) as hole transport layers have been widely used in high-efficiency inverted perovskite solar cells (PSCs) exceeded 26 %. However, the poor coverage and non-uniform distribution on the substrate of SAM further restrict the improvement of device performance. Herein, we utilize the mixed SAM strategy via the MeO-2PACz along with perfluorotripropylamine (FC-3283) to improve the SAM coverage, aiming to accelerate the carrier transport, promote the perovskite growth, regulate the surface energy levels and suppress the nonradiative recombination.

View Article and Find Full Text PDF

Unraveling climate change-induced compound low-solar-low-wind extremes in China.

Natl Sci Rev

January 2025

College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!