We have recently derived a series of cloned cell lines displaying natural killer (NK) cell-like activity from normal human fetal blood (25 weeks). The lines were obtained after repeated stimulation of mononuclear cells with allogeneic Epstein-Barr virus (EBV)-transformed B lymphocytes and are interleukin-2 (IL-2) dependent. Initial characterization of the clones has been reported previously. Certain of these clones have been found to have unusual surface characteristics, namely, they are recognized by several well-defined anti-T3 antibodies, but do not react with WT31, which is thought to recognise an invariant epitope of the human (Ti-alpha beta) structure. Transcription of the genes encoding the alpha- and beta-chains of the T-cell receptor was assessed in two of these clones (F6A4 and F6C7). Ti-beta genes were found to be expressed, whereas alpha messenger RNA was not detected in Northern blot analysis. These data strongly suggest that these cells do not produce a stoichiometric T3/Ti-alpha beta receptor complex. However, experiments performed with a monoclonal antibody (anti-NKFi) developed against F6C7 cells demonstrated the existence of a unique clonotypic structure [relative molecular mass (Mr) 85,000 (85K)] which is surface-associated with T3 proteins. Furthermore, both anti-T3 and anti-NKFi were found to block cytotoxic effector function. Together, the results support the view that T3 proteins are involved in non-major histocompatibility complex (MHC)-restricted cytotoxic reactions mediated by certain circulating fetal lymphocytes which are likely to use a clonotypic structure distinct from both the 'first' (alpha beta) and the putative 'second' (gamma delta) T-cell receptor to recognize their target. The present studies were designed to characterize this structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/323638a0 | DOI Listing |
J Hematol Oncol
January 2025
Bavarian Cancer Research Center (BZKF), R/R ALL Study Group, Bavaria, Germany.
Anti-CD19 chimeric antigen receptor T cells (CAR) are a well-established treatment option for children and young adults suffering from relapsed/refractory B-lineage acute lymphoblastic leukemia. Bridging therapy is used to control disease prior to start of lymphodepletion before CAR infusion and thereby improve efficacy of CAR therapy. However, the effect of different bridging strategies on outcome, side effects and response to CAR therapy is still poorly understood.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.
The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany. Electronic address:
T cells expressing the γδ T-cell receptor (TCR) represent a numerically small proportion of total T cells. Unlike αβ T cells they are activated by non-peptide antigens independently of MHC-presentation. γδ T cells have been recognized as a favorable prognostic marker across different tumor entities.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany. Electronic address:
Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!