A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An In Situ XAS Study of the Cobalt Rhenium Catalyst for Ammonia Synthesis. | LitMetric

A cobalt rhenium catalyst active for ammonia synthesis at 400 °C and ambient pressure was studied using in situ XAS to elucidate the reducibility and local environment of the two metals during reaction conditions. The ammonia reactivity is greatly affected by the gas mixture used in the pre-treatment step. Following H/Ar pre-treatment, a subsequent 20 min induction period is also observed before ammonia production occurs whereas ammonia production commences immediately following comparable H/N pre-treatment. In situ XAS at the Co K-edge and Re L-edge show that cobalt initiates reduction, undergoing reduction between 225 and 300 °C, whereas reduction of rhenium starts at 300 °C. The reduction of rhenium is near complete below 400 °C, as also confirmed by H-TPR measurements. A synergistic co-metal effect is observed for the cobalt rhenium system, as complete reduction of both cobalt and rhenium independently requires higher temperatures. The phases present in the cobalt rhenium catalyst during ammonia production following both pre-treatments are largely bimetallic Co-Re phases, and also monometallic Co and Re phases. The presence of nitrogen during the reduction step strongly promotes mixing of the two metals, and the bimetallic Co-Re phase is believed to be a pre-requisite for activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413814PMC
http://dx.doi.org/10.1007/s11244-018-0892-7DOI Listing

Publication Analysis

Top Keywords

cobalt rhenium
20
situ xas
12
rhenium catalyst
12
ammonia production
12
catalyst ammonia
8
ammonia synthesis
8
300 °c reduction
8
reduction rhenium
8
bimetallic co-re
8
rhenium
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!