Seed osmopriming is a pre-sowing treatment that involves limitation of the seed water imbibition, so that pre-germinative metabolic activities proceed without radicular protrusion. This technique is used for improving germination rate, uniformity of seedling growth and hastening the time to start germination. In , seed germination has been associated with the induction of enzymes involved in cell wall modifications, such as expansins. The α-expansins (EXPAs) are involved in cell wall relaxation and extension during seed germination. We used online tools to identify genes with preferential expression during seed germination and RT-qPCR to study the expression of five EXPA genes at different germination stages of non-primed and osmoprimed seeds. In silico promoter analysis of these genes showed that motifs similar to -acting elements related to abiotic stress, light and phytohormone responses are the most overrepresented in promoters of these genes, showing that their expression is likely be regulated by intrinsic developmental and environmental signals during seed germination. The osmopriming conditioning had a decreased time and mean to 50% germination without affecting the percentage of final seed germination. The dried PEG-treated seeds showed noticeable high mRNA levels earlier at the beginning of water imbibition (18 h), showing that transcripts of all five EXPA isoforms were significantly produced during the osmopriming process. The strong up-regulation of these genes, mainly , were associated with the earlier germination of the osmoprimed seeds, which qualifies them to monitor osmopriming procedures and the advancement of germination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419704 | PMC |
http://dx.doi.org/10.1007/s12298-018-0620-6 | DOI Listing |
Physiol Plant
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.
UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Nanomaterials and nanotechnology have garnered significant attention in the realm of agricultural production. Carbon dots (CDs), as a class of nanomaterials, play a crucial role in the field of plant growth due to their excellent properties. This review aims to summarize recent achievements on CDs, focusing on their methods of preparation and applications in plants systems.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
PG & Research Department of Physics, AVVM Sri Pushpam College (Autonomous), [Affiliated to Bharathidasan University, Tiruchirappalli], Poondi, Thanjavur 613503, Tamil Nadu, India. Electronic address:
Development of bio-supported photocatalysts has become a pressing need in the field of environmental remediation. This work reports the synthesis of bio-enzyme (from banana peels) inherited (ZnO/g-CN) nanocomposite by simple soft chemical method and its photocatalytic degradation ability against the mixed dye (Methylene blue (MB) + Rhodamine-B (RhB)) under UV irradiation. Synthesized nanoparticles were characterized using experimental techniques XRD, FESEM, TEM, EDAX, XPS, UV-vis-NIR spectroscopy and FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!