Soil organic matter (SOM) content is a key indicator of riparian soil functioning and in the provision of ecosystem services such as water retention, flood alleviation, pollutant attenuation and carbon (C) sequestration for climate change mitigation. Here, we studied the importance of microbial biomass and nutrient availability in regulating SOM turnover rates. C stabilisation in soil is expected to vary both vertically, down the soil profile and laterally across the riparian zone. In this study, we evaluated the influence of five factors on C mineralisation (C): (i) substrate quantity, (ii) substrate quality, (iii) nutrient (C, N and P) stoichiometry, (iv) soil microbial activity with proximity to the river (2 to 75 m) and (v) as a function of soil depth (0-3 m). Substrate quality, quantity and nutrient stoichiometry were evaluated using high and low molecular weight C-labelled dissolved organic (DOC) along with different nutrient additions. Differences in soil microbial activity with proximity to the river and soil depth were assessed by comparing initial (immediate) C rates and cumulative C mineralised at the end of the incubation period. Overall, microbial biomass C (MBC), organic matter (OM) and soil moisture content (MC) proved to be the major factors controlling rates of C at depth. Differences in the immediate and medium-term response (42 days) of C suggested that microbial growth increased and carbon use efficiency (CUE) decreased down the soil profile. Inorganic N and/or P availability had little or no effect on C suggesting that microbial community growth and activity is predominantly C limited. Similarly, proximity to the watercourse also had relatively little effect on C. This work challenges current theories suggesting that areas adjacent to watercourse process C differently from upslope areas. In contrast, our results suggest that substrate quality and microbial biomass are more important in regulating C processing rates rather than proximity to a river.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413827 | PMC |
http://dx.doi.org/10.1007/s00374-018-1317-2 | DOI Listing |
Glob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy. Electronic address:
Understanding the accumulation and stability of soil organic matter (SOM) pools as a function of time (i.e., soil age) and climate (i.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia. Electronic address:
Despite only covering ~3 % of the land mass, peatlands store more carbon (C) per unit area than any other ecosystem. This is due to the discrepancy between C fixed by the plants (Gross primary productivity (GPP)) and decomposition. However, this C is vulnerable to frequent, severe droughts and changes in the peatland microclimate.
View Article and Find Full Text PDFPoult Sci
January 2025
Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France. Electronic address:
Appropriate disposal of dead farming animals is required to guarantee effective disease control while protecting the environment. In crisis situations, alternatives to rendering can be used, including on-farm burial. The objectives of this study were to: (i) describe the burial and monitoring protocols used on poultry farms in France in response to major avian influenza outbreaks; (ii) assess the effectiveness of the burial protocol, in terms of both technical and biosecurity aspects, and microbiological, physical and chemical changes of the buried materials and the environment over time; (iii) provide recommendations for future burial and follow-up protocols.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany.
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) H labeling and (2) O natural abundance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!