This study investigated the influence of extrusion operating condition [barrel temperature (BT) (50-90 °C), feed moisture content (FM) (25-35%, w.b.), feeder speed (FS) (8-16 rpm) and screw speed to feeder speed ratio (SS:FS) (8-12)] on quality of pearl millet pasta [cooking time (CT), cooking loss (CL), hydration capacity (HC), swelling capacity (SC), hardness, springiness (SP), chewiness (CH) through response surface methodology (CCRD design)]. The results indicated that raising BT and FM reduced CT, CL, but increased HC, SC, hardness, SP, CH of pearl millet based pasta. HC, SC, hardness, SP and CH of pasta were increased as FS and SS:FS increased, whereas, CT and CL showed decreasing trend. The optimum operating conditions for pear millet based pasta was obtained at BT of 70 °C, FM of 30% (w.b.), FS of 12 rpm and SS:FS ratio of 10 with low CT (≤ 5.25 min), CL (≤ 7.45%) and high HC (≥ 2.30 g g), SC (≥ 3.14 ml g), good hardness (≥ 11.11 N), SP (≥ 1.24 N) and CH (≥ 6.09 N mm).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423343 | PMC |
http://dx.doi.org/10.1007/s13197-019-03574-3 | DOI Listing |
Int J Biol Macromol
January 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:
Coal mines generate significant amounts of dust during production, transportation, and stockpiling, leading to health hazards and environmental pollution. To address the inefficiencies and environmental impact of current chemical dust suppressants, a novel dust suppressant was developed utilizing cellulose derived from Napier grass (NG), modified through carboxymethylation, and supplemented with polyvinyl alcohol (PVA) and polyacrylamide (PAM). Orthogonal experiments identified the optimal ratio of sodium carboxymethyl cellulose (CMC), PAM, PVA, and octyl phenol polyoxyethylene ether (JFC-1) as 1:0.
View Article and Find Full Text PDFThis study investigates the nutritional and anti-nutrient profiles of extrudates produced from seven formulations of pearl millet and Bambara groundnut flour in seven different ratios: 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20, with 100% pearl millet and 100% Bambara groundnut extrudates used as controls. The extrudates were processed using a twin screw extruder and analyzed for their nutritional and anti-nutritional properties. The findings revealed a rising pattern in the content of fiber, moisture, protein, ash and fat as the substitution of Bambara groundnut increased in the extrudate.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.
The increasing demand for sustainable, robust, and cost-efficient arsenic (As) treatment techniques strengthens the implementation of new constructed wetland (CW) designs like aerated CWs in the agricultural sector. The aim was to assess and contrast the influence of various aeration rates on As elimination in subsurface flow CW utilizing plants for treating As-polluted sand. This study consisted of an experiment with 16 subsurface flow CW, operating at different As concentrations of 0, 5, 22, and 39 mg kg and aeration rates of 0, 0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia.
This study assessed the effectiveness of four competitive pasture species-Premier digit grass ( Steud. var. Premier), Rhodes grass ( Kunth.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria. Electronic address:
This study aimed to use a new protein complex of Pennisetin (Pen) a non gluten protein of pearl millet and casein (Cas), for curcumin (Cur) extract encapsulation using simple or complex coacervation. The potential improvement of Cur antioxidant activities and α-amylase inhibition after encapsulation was explored. Complex microparticles of Pen and Cas with various ratios exhibited average diameters ranging from 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!