The endosperm of cereal grain forms the staple diet for most of the world's population, and feeds much of their stock. Grain size and quality are determined largely by events taking place during coenocytic nuclear division, endosperm cellularisation and cell differentiation, and the production of storage molecules. Thus, understanding the complex signalling processes occurring at each of these steps is essential for maintaining and improving our food supply. Here, we critically review evidence for the effects of phytohormones on grain size, as well as hormone homeostasis, signalling and crosstalk. We focus on rice endosperm due to the importance of rice as a food crop and a model grass, as well as its relative neglect in recent reviews; however, data from other cereals are also discussed due to strong evidence for conserved signalling networks operating during grain development. Discussion is restricted to auxin, cytokinin, ethylene, abscisic acid and gibberellin. Our review highlights the need for accurate hormone determinations combined with information on gene expression. We present evidence for separate, localised signalling roles for auxin at different stages of grain development and highlight key research questions for other hormones where much less data are available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP18323 | DOI Listing |
J Hazard Mater
January 2025
Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Long-term exposure to Cd through contaminated food can lead to multiple adverse health effects on humans. Although previous studies have covered global food Cd concentrations and dietary Cd exposures across different populations, there are increasing concerns regarding the adequacy of current food Cd safety standards to protect populations from adverse health effects. Moreover, incorporation of Cd relative bioavailability (Cd-RBA) in foods improves the accuracy of health risk assessment.
View Article and Find Full Text PDFJ Exp Bot
January 2025
University of Bonn, Institute for Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany.
Boron deficiency is an abiotic stress that negatively impacts plant growth and yield worldwide. Boron deficiency primarily affects the development of plant meristems, groups of stem cells critical for all postembryonic tissue growth. The link between boron and meristem development was first established in 1923, when boron's essentiality was discovered.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China. Electronic address:
Starch-ferulic acid (FA) composites have been developed for medical and food fields, while little focus is caused on their use in functional products by 3D printing. In this work, dynamic high-pressure microfluidization was employed to treat starch at various concentrations, for preparing modified starch-FA composites. The high-performance liquid chromatography results showed that an increased starch concentration was conducive to a high yield of composite with enhanced binding of FA.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
This study aims to examine the hazards of zearalenone (ZEN) to humans and assess the risk of dietary exposure to ZEN, particularly in relation to precocious puberty in children from the Zhejiang Province. The test results from five types of food from the Zhejiang Province show that corn oil has the highest detection rate of 87.82%.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
College of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
During the rice harvesting process, severe occlusion and adhesion exist among multiple targets, such as rice, straw, and leaves, making it difficult to accurately distinguish between rice grains and impurities. To address the current challenges, a lightweight semantic segmentation algorithm for impurities based on an improved SegFormer network is proposed. To make full use of the extracted features, the decoder was redesigned.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!