Cancer cell metabolism is characterized by aerobic glycolysis or the "Warburg effect". Enhanced Akt signaling is associated with activation of various downstream enzymes involved in the glycolytic process, whereas activation of 5'-AMP-activated kinase (AMPK) acts to terminate energy expending mechanisms and decrease glycolytic enzyme expression. Studies were conducted to determine if the anticancer effects of γ-tocotrienol, are mediated through a suppression in aerobic glycolysis. Results show that treatment with 0-7 μM γ-tocotrienol throughout a 4-day culture period resulted in a dose-responsive increase in AMPK activation, and corresponding decrease in Akt activity in human MCF-7 and MDA-MB-231 breast cancer cells. γ-Tocotrienol treatment was also found to induce a dose-responsive decrease in phosphorylated-Fox03 (inactivated), a transcription factor that acts to inhibit in the levels of glycolytic enzyme, and this decrease was associated with a reduction in glycolytic enzyme levels and activity, as well as glucose consumption in these cells. PCR microarray analysis shows that γ-tocotrienol treatment decreases the expression of genes associate with metabolic signaling and glycolysis in MCF-7 and MDA-MB-231 breast cancer cells. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are mediated, at least in part, by a suppression in the Warburg effect.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635581.2019.1599969DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer cells
12
glycolytic enzyme
12
suppression warburg
8
ampk activation
8
aerobic glycolysis
8
anticancer effects
8
effects γ-tocotrienol
8
γ-tocotrienol mediated
8
mediated suppression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!