Silica scaling of membranes used in reverse osmosis desalination processes is a severe problem, especially during the desalination of brackish groundwater due to high silica concentrations. This problem limits the water supply in inland arid and semiarid regions. Here, we investigated the influence of surface-exposed organic functional groups on silica precipitation and scaling. A test solution simulating the mineral content of brackish groundwater desalination brine at 75% recovery was used. The mass and chemical composition of the precipitated silica was monitored using a quartz crystal microbalance, X-ray photoelectron spectroscopy, and infrared spectroscopy, showing that surfaces with positively charged groups induced rapid silica precipitation, and the rate of silica precipitation followed the order -NH ∼ -N(CH) > -NH/-COOH > -HPO ∼ -OH > -COOH > -CH. Force vs distance AFM measurements showed that the adhesion energy between a silica colloid glued to AFM cantilever and the studied surfaces increased as the surface charge changed from negative to positive. Thus, for the first time direct measurements of molecular forces and specific chemical groups that govern silica scaling during brackish water desalination is reported here. The influence of the different functional groups and the effect of the surface charge on silica precipitation that were found here can be used to design membranes that resist silica scaling in membrane-based desalination processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b06154 | DOI Listing |
Nanomaterials (Basel)
January 2025
State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.
A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch-common alternatives for microplastics in cosmetics-using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes.
View Article and Find Full Text PDFProtist
January 2025
School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom. Electronic address:
Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.
Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
The Njord Centre, Department of Physics, University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway.
Water participates in countless processes on Earth, and the properties of mineral surfaces can be drastically changed in the presence of water. For example, the fracture toughness of silica glass is reduced by 25% for water-filled cracks than for dry cracks [ , , 9341-9354]. An accurate description of water is therefore essential for modeling the behavior of minerals in aqueous environments and, in particular, for modeling dynamic processes such as fracture, where the mechanical response of water may play an important role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!