The aims of this study were to analyze biochemical and morphological responses (glutathione S-transferase activity and branchial lesions) in Ucides cordatus (crabs) and to verify how the species is responding to environmental contamination in a port (potentially contaminated area) and mangrove (reference area; Amazon Coast, Maranhão, Brazil). Adult males were captured bimonthly for a period of 1 year. Higher GST activity (1.03 ± 0.07 μmol min mg protein) was observed in crabs in the port when compared with those in the reference area (p < 0.05). The greatest number of branchial lesions (serious alterations) was recorded in crabs only in the port area. The GST activity increased until serious lesions appeared; after this limit, GST activity decreased dramatically to very low levels, thus resulting in irreversible lesions (lamella collapse). The mathematical model based on the two parameters evaluated in U. cordatus showed that the port area experienced substantial contamination impact, while the mangroves (reference area) presented moderate environmental quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-04849-0DOI Listing

Publication Analysis

Top Keywords

biochemical morphological
8
morphological responses
8
ucides cordatus
8
reference area
8
responses ucides
4
cordatus crustacea
4
crustacea decapoda
4
decapoda indicators
4
indicators contamination
4
contamination status
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Seasonal Pattern of Endo-β-Mannanase Activity During Germination of , Exhibiting Morphophysiological Dormancy.

Plants (Basel)

January 2025

Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.

Morphophysiological dormancy (MPD) is considered one of the most primitive dormancy classes among seed plants. While extensive studies have examined the occurrence of endo-β-mannanase in seeds with physiological dormancy (PD) or non-dormancy, little is known about the activity of this enzyme in seeds with MPD. This study aimed to investigate the temporal and spatial patterns of endo-β-mannanase activity during dormancy break and germination.

View Article and Find Full Text PDF

Leaves Extracts Inhibit the Development of Ascitic and Solid Ehrlich Tumors.

Pharmaceuticals (Basel)

December 2024

Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil.

is traditionally known for its medicinal properties. Objectives: Here, we investigated the effects of crude extract (CE) and ethyl acetate fraction (EAF) obtained from leaves on the ascitic (EA) and solid (ES) forms of Ehrlich tumors. : Induced and uninduced BALB/c mice were treated intramuscularly, for 7 or 14 days, with saline solution or CE and EAF, both at a 10% concentration, based on in vitro cytotoxicity assessment.

View Article and Find Full Text PDF

The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop biocompatible heterogeneous packaging and laser surface modification techniques to enable the encapsulation of electronic components while minimizing their impact on fluid dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!