MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.

J Mech Behav Biomed Mater

School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, Halifax, NS, Canada B3H 4R2; Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, Halifax, NS, Canada B3H 4R2. Electronic address:

Published: July 2019

The mechanical properties of tendon are due to the properties and arrangement of its collagen fibril content. Collagen fibrils are highly-organized supermolecular structures with a periodic banding pattern (D-band) indicative of the geometry of molecular organization. Following mechanical overload of whole tendon, collagen fibrils may plastically deform at discrete sites along their length, forming kinks, and acquiring a fuzzy, non-D-banded, outer layer (shell). Termed discrete plasticity, such non-uniform damage to collagen fibrils suggests localized cellular response at the fibril level during subsequent repair/replacement. Matrix metallo-proteinases (MMPs) are enzymes which act upon the extracellular matrix, facilitating cell mobility and playing important roles in wound healing. A sub-group within this family are the gelatinases, MMP-2 and MMP-9, which selectively cleave denatured collagen molecules. Of these two, MMP-9 is specifically upregulated during the initial stages of tendon repair. This suggests a singular function in damage debridement. Using atomic force microscopy (AFM), a novel fibril-level enzymatic assay was employed to assess enzymatic removal of material by trypsin and MMP-9 from individual fibrils which were: (i) untreated, (ii) partially heat denatured, (iii) or displaying discrete plasticity damaged after repeated mechanical overload. Both enzymes removed material from heat denatured and discrete plasticity-damaged fibrils; however, only MMP-9 demonstrated the selective removal of non-D-banded material, with greater removal from more damaged fibrils. The selectivity of MMP-9, coupled with documented upregulation, suggests a likely mechanism for the in vivo debridement of individual collagen fibrils, following tendon overload injury, and prior to deposition of new collagen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2019.03.020DOI Listing

Publication Analysis

Top Keywords

collagen fibrils
20
discrete plasticity
12
mmp-9 selectively
8
non-d-banded material
8
collagen
8
fibrils
8
mechanical overload
8
heat denatured
8
mmp-9
6
discrete
5

Similar Publications

Medusa's gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone.

iScience

January 2025

Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.

Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.

View Article and Find Full Text PDF

Endocytic recycling is central to circadian collagen fibrillogenesis and disrupted in fibrosis.

Elife

January 2025

Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Background: Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity.

View Article and Find Full Text PDF

AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly.

Matrix Biol

February 2025

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!