The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process.

Water Res

School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China. Electronic address:

Published: June 2019

The formation of chlorinated by-products is a major concern associated with electrochemical water treatment processes. This study investigated the formation of chlorinated by-products during surface water treatment by a newly developed electrochemical advanced oxidation process (EAOP), the electro-peroxone (E-peroxone) process, which couples ozonation with in situ electro-generation of hydrogen peroxide (HO) from cathodic oxygen reduction. Due to the enhanced ozone (O) conversion to hydroxyl radicals (•OH) by electro-generated HO, the E-peroxone process considerably accelerated the abatement of ozone-refractory micropollutants such as clofibric acid and chloramphenicol in the selected surface water compared to conventional ozonation. In addition, the cathodically generated HO effectively quenched hypochlorous acid (HOCl) derived from the anodic oxidation of chloride in the surface water. Therefore, the formation of trichloromethane (TCM) and chloroacetic acids (CAAs) from the reactions of HOCl with dissolved organic matter (DOM) was insignificant during the E-peroxone process, and similar levels of TCM and CAAs were generally observed in the conventional ozonation and E-peroxone treated water. In contrast, considerable amounts of HOCl could be generated from the anodic oxidation of chloride and then accumulated in the surface water during conventional electrolysis process, which resulted in significantly higher concentrations of TCM and CAAs in the electrolysis treated water. The results of this study suggest that the E-peroxone process can overcome the major limitation of conventional electrochemical processes and provide an effective and safe EAOP alternative for micropollutant abatement during water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.03.049DOI Listing

Publication Analysis

Top Keywords

water treatment
16
surface water
16
e-peroxone process
16
water
9
hydrogen peroxide
8
formation chlorinated
8
chlorinated by-products
8
conventional ozonation
8
anodic oxidation
8
oxidation chloride
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!