Mannich base Cu(II) complexes as biomimetic oxidative catalyst.

J Inorg Biochem

Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India; Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India. Electronic address:

Published: June 2019

Galactose Oxidase (GOase) and catechol oxidase (COase) are the metalloenzymes of copper having monomeric and dimeric sites of coordination, respectively. This paper summarizes the results of our studies on the structural, spectral and catalytic properties of new mononuclear copper (II) complexes [CuL(OAc)] (1), and [CuL] (2), (HL = 2,4‑dichloro‑6‑{[(2'‑dimethyl‑aminoethyl)methylamino]methyl}‑phenol) which can mimic the functionalities of the metalloenzymes GOase and COase. The structure of the compounds has been elucidated by X-ray crystallography and the mimicked Cu(II) catalysts were further characterized by EPR. These mimicked models were used for GOase and COase catalysis. The GOase catalytic results were identified by GC-MS and, analyzed by HPLC at room temperature. The conversion of benzyl alcohol to benzaldehyde were significant in presence of a strong base, BuNOMe in comparison to the neutral medium. Apart from that, despite of being monomeric in nature, both the homogeneous catalysts are very prone to participate in COase mimicking oxidation reaction. Nevertheless, during COase catalysis, complex 1 was found to convert 3,5‑ditertarybutyl catechol (3,5-DTBC) to 3,5‑ditertarybutyl quinone (3,5-DTBQ) having greater rate constant, k or turn over number (TON) value over complex 2. The generation of reactive intermediates during COase catalysis were accounted by electrospray ionization mass spectrometry (ESI-MS). Through mechanistic approach, we found that HO is the byproduct for both the GOase and COase catalysis, thus, confirming the generation of reactive oxygen species during catalysis. Notably, complex 1 having mono-ligand coordinating atmosphere has superior catalytic activity for both cases in comparison to complex 2, that is having di-ligand environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2019.03.023DOI Listing

Publication Analysis

Top Keywords

coase catalysis
16
goase coase
12
generation reactive
8
coase
7
goase
5
catalysis
5
mannich base
4
base cuii
4
cuii complexes
4
complexes biomimetic
4

Similar Publications

Impressive promiscuous biomimetic models of ascorbate, amine, and catechol oxidases.

J Inorg Biochem

October 2024

Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620 001, Tamil Nadu, India.

Copper metalloenzymes ascorbate oxidase (AOase), amine oxidase (AmOase), and catechol oxidase (COase) possess copper(II) sites of coordination, which are trimeric, homodimeric, and dimeric, respectively. Two newly mononuclear copper(II) complexes, namely, [Cu(L)(bpy)](ClO) (1) and [Cu(L)(phen)](ClO) (2) where HL = Schiff base, have been synthesized. UV-visible, EPR and single-crystal X-ray diffraction examinations were used to validate the geometry in solution and solid state.

View Article and Find Full Text PDF

Mannich base Cu(II) complexes as biomimetic oxidative catalyst.

J Inorg Biochem

June 2019

Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India; Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India. Electronic address:

Galactose Oxidase (GOase) and catechol oxidase (COase) are the metalloenzymes of copper having monomeric and dimeric sites of coordination, respectively. This paper summarizes the results of our studies on the structural, spectral and catalytic properties of new mononuclear copper (II) complexes [CuL(OAc)] (1), and [CuL] (2), (HL = 2,4‑dichloro‑6‑{[(2'‑dimethyl‑aminoethyl)methylamino]methyl}‑phenol) which can mimic the functionalities of the metalloenzymes GOase and COase. The structure of the compounds has been elucidated by X-ray crystallography and the mimicked Cu(II) catalysts were further characterized by EPR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!