Progesterone (Pg)/progesterone receptor (PR) signaling drives mammary gland side-branching and alveologenesis, but the mechanisms through which Pg/PR signaling functions remain to be clarified. Using in vitro and in vivo models and histological and molecular analyses, we determined the role of Zfhx3 transcription factor in mammary gland development driven by Pg/PR signaling. Postnatal deletion of Zfhx3 in mouse mammary epithelial cells attenuated side-branching morphogenesis and alveologenesis. These effects were undetectable in the absence of Pg/PR signaling. During the estrus cycle, Zfhx3 expression corresponded to that of Pg, being at the highest level at the diestrus stage; Zfhx3 deletion inhibited mammary gland branching more potently at diestrus than estrus stage. Loss of Zfhx3 not only attenuated the expansion of stem/progenitor cells driven by Pg/PR signaling, but also impaired the function of Pg/PR signaling in the transcriptional activation of multiple genes. In addition, Pg/PR signaling significantly expanded PR- and Zfhx3-positive epithelial cells, and induced the physical association of ZFHX3 with PR. These findings establish Zfhx3 as an integral transcription factor of Pg/PR signaling in driving side-branching and alveologenesis during mammary gland development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2019.03.003 | DOI Listing |
Elife
November 2023
University of Maryland, College Park, College Park, United States.
Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using ) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception.
View Article and Find Full Text PDFElife
May 2020
Department of Biology, University of Maryland, College Park, United States.
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved.
View Article and Find Full Text PDFJ Genet Genomics
March 2019
Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China; Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA. Electronic address:
Progesterone (Pg)/progesterone receptor (PR) signaling drives mammary gland side-branching and alveologenesis, but the mechanisms through which Pg/PR signaling functions remain to be clarified. Using in vitro and in vivo models and histological and molecular analyses, we determined the role of Zfhx3 transcription factor in mammary gland development driven by Pg/PR signaling. Postnatal deletion of Zfhx3 in mouse mammary epithelial cells attenuated side-branching morphogenesis and alveologenesis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2013
Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.
Progesterone (Pg) is an essential steroid hormone during mammary gland development and tumorigenesis, including the maintenance of epithelial stem/progenitor cells. Pg functions through interaction with the progesterone receptors (PR) and Pg-PR signaling is thought to be mediated by key transcription factors, which are largely unidentified. In this study, we have identified the ATBF1 transcription factor as a transcriptional target of Pg-PR signaling in mammary epithelial cells.
View Article and Find Full Text PDFBiochemistry
November 1996
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Photoactive yellow protein (PYP) is a photoreceptor containing a unique 4-hydroxycinnamic acid (pCA) chromophore. The trans to cis photoisomerization of this chromophore activates a photocycle involving first a short-lived red-shifted intermediate (pR), then a long-lived blue-shifted intermediate (pB), and finally recovery of the original receptor state (pG). The pCA chromophore is deprotonated in pG and protonated in pB, but the proton donor for this process has not yet been identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!