Enhanced tumor uptake and activity of nanoplex-loaded doxorubicin.

Biochem Biophys Res Commun

Department of Pathology, University Maryland School of Medicine, Baltimore, MD, 21201, United States. Electronic address:

Published: May 2019

Doxorubicin (Dox) has widespread use as a cancer chemotherapeutic agent, but Dox is limited by several side effects including irreversible cardiomyopathy. Although liposomal Dox formulations, such as Doxil, mitigate side effects, they do not prolong survival in many patients. As a result, efforts have continued to discover improved formulations of Dox. We previously found that a peptide-based nanoplex delivered plasmid DNA efficiently to tumors in murine models. Unlike the majority of nanoparticles that depend solely on enhanced permeability and retention (EPR) for their transport into the tumor, our peptide-based nanoplex has a potential advantage in that its uptake primarily depends on neuropilin-1 receptor targeting. Because Dox binds to DNA, we tested whether this delivery platform could effectively deliver Dox to tumors and reduce their size. The nanoplexes increased the levels of Dox in tumors by about 5.5-fold compared to aqueous (free) Dox controls. Consistent with enhanced levels in the tumor, the nanoplex-Dox treatment had significantly greater anti-tumor activity. Whereas low dose free Dox did not reduce the size of tumors compared to untreated controls, the low dose nanoplex-Dox reduced the size of tumors by nearly 55% (p < 0.001). The high dose nanoplex-Dox also inhibited the size of tumor significantly more than the comparable high-dose free Dox (p < 0.001). Furthermore, apoptosis and proliferation markers (Ki67) of tumors observed in the different treatment groups correlated with their ability to inhibit tumor size. This study shows the efficacy of an NRP-1 targeted nanoplexes to deliver Dox to tumors in vivo and lays the groundwork for more complex and effective formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531033PMC
http://dx.doi.org/10.1016/j.bbrc.2019.03.190DOI Listing

Publication Analysis

Top Keywords

dox
9
side effects
8
peptide-based nanoplex
8
dox tumors
8
reduce size
8
free dox
8
low dose
8
size tumors
8
tumors
5
enhanced tumor
4

Similar Publications

Ultrasound-assisted efficient targeting of doxorubicin to the tumor microenvironment by lyso-thermosensitive liposomes of varying phase transition temperatures.

Eur J Pharm Sci

January 2025

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.

View Article and Find Full Text PDF

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

Expression of ABCB1, ABCC1, and LRP in Mesenchymal Stem Cells from Human Amniotic Fluid and Bone Marrow in Culture-Effects of In Vitro Osteogenic and Adipogenic Differentiation.

Int J Mol Sci

January 2025

Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.

View Article and Find Full Text PDF

Apelinergic System Affects Electrocardiographic Abnormalities Induced by Doxorubicin.

Biomedicines

January 2025

Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland.

: Anthracyclines remain a pivotal element of numerous tumor management regimens; however, their utilization is associated with a range of adverse effects, the most significant of which is cardiotoxicity. Research is constantly being conducted to identify substances that could be incorporated into ongoing cancer chemotherapy to mitigate anthracycline-induced cardiotoxicity. Recently, the apelinergic system has received a lot of attention in this field due to its involvement in cardiovascular regulation.

View Article and Find Full Text PDF

Chemotherapy serves as the primary treatment for cancers, facing obstacles due to the rise of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from inadequate targeting of cancer cells and low accumulation at the tumor location. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!