Transformation of endocrine active compounds (EACs) by either chlorination (Cl-D) or UV disinfection (UV-D) was studied by field sampling and bench-scale validation studies. Field testing assessed concentration of 13 EACs in effluent at two Chicago area 250 MGD wastewater reclamation plants (WRP) over two years. One WRP uses chlorination/dechlorination while the other employs UV disinfection. Target compounds included bupropion, carbamazepine, citalopram, duloxetine, estradiol, estrone, fluoxetine, nonylphenol, norfluoxetine, norsertraline, paroxetine, sertraline, and venlafaxine. Concentrations of 9/13 target compounds were partially reduced after disinfection (5-65% reduction). None of the target compounds were fully transformed by either chlorination or UV treatment at the WRP scale. In bench-scale experiments each compound was spiked into deionized water or effluent and treated in a process mimicking plant-scale disinfection to validate transformations. Correlation was observed between compounds that were transformed in bench-testing and those that decreased in concentration in post-disinfection WRP effluent (10/13 compounds). A survey of potential reaction products was made. Chlorination of some amine containing compounds produced chloramine by-products that reverted to the initial form after dechlorination. Transformation products produced upon simulated UV disinfection were more diverse. Laboratory UV-induced transformation was generally more effective under stirred conditions, suggesting that indirect photo-induced reactions may predominate over direct photolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.03.145DOI Listing

Publication Analysis

Top Keywords

target compounds
12
bench-scale experiments
8
transformation endocrine
8
endocrine active
8
compounds
8
active compounds
8
disinfection
6
correlating effluent
4
effluent concentrations
4
concentrations bench-scale
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!