Musa basjoo regulates the gut microbiota in mice by rebalancing the abundance of probiotic and pathogen.

Microb Pathog

College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China. Electronic address:

Published: June 2019

Musa basjoo is a kind of popular slimming fruit in southern China. However, even though the trophic component and physiological effect are well studied, its internal mechanism in reconstructing gut microbiota remains unclear. In this study, maturity of M. basjoo were divided into four levels. Results indicated that M. basjoo in level Ⅱ (with 35% maturity) represented the greatest increase in the growth in vitro of probiotics, Lactobacillus plantarum FMNP01 and Lactobacillus casei FMNP02. After feeding M. basjoo with the middle dose (2.67 g/kg·BW) to mice for 21 days, gut microbiota from mice feces was isolated and sequenced. Results of 16SrDNA sequencing showed that the scattered genera of gut microbiota were significantly gathered. The amounts of different pathogens were decreased, while probiotics such as genera Bacteroides and Roseburia were significantly increased (p < 0.05). Results of function prediction indicated that the reconstruction of gut microbiota may due to the change in carbohydrate transportation, biosynthesis of cell wall, cell membrane, and cell envelope. This study has drawn a basic mechanism in reconstructing gut microbiota by feeding M. basjoo and lay out a foundation for further reach on the interaction between human as diner and M. basjoo as food.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2019.04.003DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
musa basjoo
8
microbiota mice
8
basjoo regulates
4
gut
4
regulates gut
4
microbiota
4
mice rebalancing
4
rebalancing abundance
4
abundance probiotic
4

Similar Publications

Background: Chronic kidney disease (CKD) is a highly prevalent condition with complications such as constipation, inflammation, and dietary restrictions. Gut microbiota is an ecosystem of trillions of bacteria and other microorganisms such as viruses, fungi, and other eukaryotes. This review aimed to analyze the correlation between CKD and the microbiota.

View Article and Find Full Text PDF

The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.

View Article and Find Full Text PDF

Introduction: This study aimed to investigate the effects of Isalo scorpion cytotoxic peptide (IsCT) on the growth performance, immune function, and gut microbiota of yellow-feathered broilers.

Methods: The experiment involved supplementing a corn-soybean meal-based diet with various dietary levels of IsCT. The experiment adopted a completely randomized design.

View Article and Find Full Text PDF

The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies.

View Article and Find Full Text PDF

Chemotherapy-induced diarrhea (CID) is a common and harmful side effect of chemotherapy, greatly impacting patients' quality of life and potentially compromising their chances of survival. Disruption of the balance in intestinal microbiota and compromised integrity of the intestinal barrier are key factors contributing to CID caused by mucositis. This paper investigated the mechanism through which intestinal microbiota activate Toll-like receptors and STING pathways to mediate intestinal mucosal inflammation resulting from immune responses in the gut, uncovering a novel mechanism of intestinal microbiota in chemotherapy-induced diarrhea, and suggesting innovative approaches for the prevention and management of CID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!