Mycobacterium tuberculosis (Mtb) has the extraordinary ability to persist for decades within granulomas in the human host. These histopathological structures involved in both protection and pathogenesis, are subject to various influences from the host systemically and through micro-niche environments. Despite the fact that vitamin D (VD) has a key role in macrophage activation and mycobacterial clearance in the early stages of Mtb infection, the overall role of VD in granuloma maintenance or functionality has been scarcely studied. VD deficiency has long time been known to influence on gut microbiota composition, and recent studies have shown that it can also impact on respiratory microbiome. The human microbiota plays an important role in pathogen colonization resistance, and it has been proposed to play a potential role in TB pathogenesis. In this article, we have reviewed current knowledge on the interaction between VD, the lung microbiome and TB, and propose mechanisms by which the tuberculous granuloma's outcome could be modulated by these two factors. The determinants of the final fate of lung granulomas are still unclear, and deciphering the underlying drivers of Mtb infection outcome within those structures is of critical importance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2019.03.041DOI Listing

Publication Analysis

Top Keywords

lung microbiome
8
mtb infection
8
microbiome vitamin
4
vitamin tuberculous
4
tuberculous granuloma
4
granuloma balance
4
balance triangle
4
triangle mycobacterium
4
mycobacterium tuberculosis
4
tuberculosis mtb
4

Similar Publications

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Effects and mechanism of combination of Platycodon grandiflorum polysaccharides and Platycodon saponins in the treatment of chronic obstructive pulmonary disease rats through the gut-lung axis.

J Ethnopharmacol

December 2024

College of pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China. Electronic address:

Ethnopharmacological Relevance: Platycodon grandiflorum (Jacq.) A. DC.

View Article and Find Full Text PDF

A conserved pilin from uncultured gut bacterial clade TANB77 enhances cancer immunotherapy.

Nat Commun

December 2024

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.

Immune checkpoint blockade (ICB) has become a standard anti-cancer treatment, offering durable clinical benefits. However, the limited response rate of ICB necessitates biomarkers to predict and modulate the efficacy of the therapy. The gut microbiome's influence on ICB efficacy is of particular interest due to its modifiability through various interventions.

View Article and Find Full Text PDF

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN.

Materials And Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals.

View Article and Find Full Text PDF

An overview of climate changes and its effects on health - from mechanisms to One Health.

J Allergy Clin Immunol Pract

December 2024

Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland.

Human activities, primarily the burning of fossil fuels, widespread deforestation, soil erosion or machine-intensive farming methods, manufacturing, food processing, mining, and construction iron, cement, steel, and chemicals industry, have been the main drivers of the observed increase in Earth's average surface temperature and climate change. Rising global temperatures, extreme weather events, ecosystems disruption, agricultural impacts, water scarcity, problems in access to good quality water, food and housing, and profound environmental disruptions such as biodiversity loss and extreme pollution are expected to steeply increase the prevalence and severity of acute and chronic diseases. Its long-term effects cannot be adequately predicted or mitigated without a comprehensive understanding of the adaptive ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!