Degeneration of the intervertebral disc (IVD) is a leading source of chronic low back pain or neck pain, and represents the main cause of long-term disability worldwide. In the aim to relieve pain, total disc replacement (TDR) is a valuable surgical treatment option, but the expected benefit strongly depends on the prosthesis itself. The present contribution is focused on the synthetic mimic of the native IVD in the aim to optimally restore its functional anatomy and biomechanics, and especially its time-dependency. Semi-crystalline polyethylene (PE) materials covering a wide spectrum of the crystallinity are used to propose new designs of TDR. The influence of the crystallinity on various features of the time-dependent mechanical response of the PE materials is reported over a large strain range by means of dynamic mechanical thermo-analysis and video-controlled tensile mechanical tests. The connection of the stiffness and the yield strength with the microstructure is reported in the aim to propose a model predicting the crystallinity dependency of the response variation with the frequency. New designs of TDR are proposed and implemented into an accurate computational model of a cervical spine segment in order to simulate the biomechanical response under physiological conditions. Predicted in-silico motions are found in excellent agreement with experimental data extracted from published in-vitro studies under compression and different neck movements, namely, rotation, flexion/extension and lateral bending. The simulation results are also criticized by analyzing the local stresses and the predicted biomechanical responses provided by the different prosthetic solutions in terms of time-dependency manifested by the hysteretic behavior under a cyclic movement and the frequency effect.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-019-6243-9DOI Listing

Publication Analysis

Top Keywords

crystallinity dependency
8
time-dependent mechanical
8
mechanical response
8
total disc
8
disc replacement
8
designs tdr
8
crystallinity
4
dependency time-dependent
4
mechanical
4
response
4

Similar Publications

Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability.

View Article and Find Full Text PDF

The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.

View Article and Find Full Text PDF

Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).

View Article and Find Full Text PDF

Pseudomorphic Transformation in Nanostructured Thiophene-Based Materials.

ACS Nano

January 2025

Consiglio Nazionale delle Ricerche (CNR) - Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.

This study reveals the capability of nanostructured organic materials to undergo pseudomorphic transformations, a ubiquitous phenomenon occurring in the mineral kingdom that involves the replacement of a mineral phase with a new one while retaining the original shape and volume. Specifically, it is demonstrated that the postoxidation process induced by HOF·CHCN on preformed thiophene-based 1D nanostructures preserves their macro/microscopic morphology while remarkably altering their electro-optical properties by forming a new oxygenated phase. Experimental evidence proves that this transformation proceeds via an interface-coupled dissolution-precipitation mechanism, leading to the growth of a porous oxidized shell that varies in thickness with exposure time, enveloping the pristine smooth core.

View Article and Find Full Text PDF

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!