Glucose controls glucagon secretion by directly modulating cAMP in alpha cells.

Diabetologia

Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden.

Published: July 2019

Aims/hypothesis: Glucagon is critical for normal glucose homeostasis and aberrant secretion of the hormone aggravates dysregulated glucose control in diabetes. However, the mechanisms by which glucose controls glucagon secretion from pancreatic alpha cells remain elusive. The aim of this study was to investigate the role of the intracellular messenger cAMP in alpha-cell-intrinsic glucose regulation of glucagon release.

Methods: Subplasmalemmal cAMP and Ca concentrations were recorded in isolated and islet-located alpha cells using fluorescent reporters and total internal reflection microscopy. Glucagon secretion from mouse islets was measured using ELISA.

Results: Glucose induced Ca-independent alterations of the subplasmalemmal cAMP concentration in alpha cells that correlated with changes in glucagon release. Glucose-lowering-induced stimulation of glucagon secretion thus corresponded to an elevation in cAMP that was independent of paracrine signalling from insulin or somatostatin. Imposed cAMP elevations stimulated glucagon secretion and abolished inhibition by glucose elevation, while protein kinase A inhibition mimicked glucose suppression of glucagon release.

Conclusions/interpretation: Glucose concentrations in the hypoglycaemic range control glucagon secretion by directly modulating the cAMP concentration in alpha cells independently of paracrine influences. These findings define a novel mechanism for glucose regulation of glucagon release that underlies recovery from hypoglycaemia and may be disturbed in diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560012PMC
http://dx.doi.org/10.1007/s00125-019-4857-6DOI Listing

Publication Analysis

Top Keywords

glucagon secretion
24
alpha cells
20
glucagon
11
glucose
10
glucose controls
8
controls glucagon
8
secretion directly
8
directly modulating
8
modulating camp
8
glucose regulation
8

Similar Publications

ACUTE HYPERGLYCEMIA INDUCES PODOCYTE APOPTOSIS BY MONOCYTE TNF-α RELEASE, A PROCESS ATTENUATED BY VITAMIN D AND GLP-1 RECEPTOR AGONISTS.

J Steroid Biochem Mol Biol

January 2025

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, VA Medical Center, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Targeting optimal glycemic control based on hemoglobin A1c (A1c) values reduces but does not abolish the onset of diabetic kidney disease and its progression to chronic kidney disease (CKD). This suggests that factors other than the average glucose contribute to the residual risk. Vitamin D deficiency and frequent episodes of acute hyperglycemia (AH) are associated with the onset of albuminuria and CKD progression in diabetes.

View Article and Find Full Text PDF

In this article, we review the study by Jin , which examined the role of intestinal glucagon-like peptide-1 (GLP-1) in counterregulatory responses to hypoglycemia in patients with type 1 diabetes mellitus (T1DM). With the global rise of T1DM, there is an increased burden on society and healthcare systems. Due to insulin therapy and islet dysfunction, T1DM patients are highly vulnerable to severe hypoglycemia, a leading cause of mortality.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.

View Article and Find Full Text PDF

Effect of long-term negative energy on appetite hormone levels in individuals with prediabetes and diabetes.

Rev Assoc Med Bras (1992)

January 2025

Yalova University, Faculty of Medicine, Department of Medical Biochemistry, AD - Yalova, Turkey.

Objective: Calorie restriction and exercise are commonly used first interventions to prevent the progression of prediabetes and alleviate the symptoms of type 2 diabetes. Our study was designed to determine the effect of the energy deficit caused by long-term (12-week) calorie restriction and exercise programs on appetite responses in obese individuals with prediabetes and type 2 diabetes.

Methods: Calorie restriction and exercise programs appropriate for age, gender, and work environment were applied to 22 individuals with prediabetes and 22 with type 2 diabetes participating in the study for a period of 12 weeks.

View Article and Find Full Text PDF

Purpose: Glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) and basal insulin are currently used in the treatment of type 2 diabetes mellitus (T2DM) as long-acting injectables. In this study, we aimed to compare the cardiovascular (CV) and renal outcomes of GLP-1 RAs and basal insulin treatment in patients with T2DM.

Method: We conducted a propensity score-matched cohort study of patients from Chang Gung Memorial Hospital institutions between 2013 and 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!