Circular RNAs open a new chapter in cardiovascular biology.

Nat Rev Cardiol

Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Published: August 2019

Circular RNAs (circRNAs) are emerging as a new class of non-coding RNA molecules. This unusual class of RNA species is generated by a back-splicing event of one or two exons, resulting in a covalently closed circRNA molecule. Owing to their circular form, circRNAs are protected from degradation by exonucleases and have greater stability than linear RNA. Advances in computational analysis of RNA sequencing have revealed that thousands of different circRNAs are expressed in a wide range of mammalian tissues, including the cardiovascular system. Moreover, numerous circRNAs are expressed in a disease-specific manner. A great deal of progress has been made in understanding the biogenesis and function of these circRNAs. In this Review, we discuss the current understanding of circRNA biogenesis and function, with a particular emphasis on the cardiovascular system.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41569-019-0185-2DOI Listing

Publication Analysis

Top Keywords

circular rnas
8
circrnas expressed
8
cardiovascular system
8
biogenesis function
8
circrnas
5
rnas open
4
open chapter
4
chapter cardiovascular
4
cardiovascular biology
4
biology circular
4

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

With the rapid increase in the number of implant operations, the incidence of bone infections has increased. Methicillin-resistant Staphylococcus aureus (S. aureus) and other emerging fully drug-resistant strains make the management of bone infections even more challenging.

View Article and Find Full Text PDF

Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.

View Article and Find Full Text PDF

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

The complete genome sequence of , a goldthread anthracnose pathogen, was sequenced using PacBio Revio and MGI DNBSEQ-T7 PE150. It contains 10 chromosomes, 5 mini chromosomes, a circular mitochondrial chromosome, and 13,129 genes predicted with RNA-Seq data in a 52.13-Mb genome with an of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!