To inactivate the potentially pathogenic microorganisms and safely utilize vegetable waste compost, ultra-high temperatures (>70°C) should be maintained during the composting without having an inhibitory effect on maturity. This study investigated the influence of bulk density (part 1) and easily-degraded organic matter content (EDOMC, part 2) on temperature evolution during vegetable waste composting: Part 1: corn straw with different particle sizes was used to achieve different bulk densities in the composting material (BD1-BD3); Part 2: partial or total substitution of the corn straw by corn starch was carried out to obtain different EDOMC (ED1-ED4). The composting experiments were conducted in a lab-scale reactor (1.75kg material) and lasted for 30d. Temperature and CO emission were recorded daily, and the organic matter, lignocellulose, microbial activity, germination index (GI) and C/N of the samples were measured at different stages. The highest temperature (65.7°C) in part 1 occurred in the treatment with the bulk density of 0.35g/cm, which also had the longest thermophilic phase. Bulk density was found to seriously influence the utilization efficiency of O and heat transfer through materials, rather than heat production from organic matter degradation. In experiment part 2, the highest temperature was obtained with EDOMC of 45% (71.4°C). Therefore, adjusting the bulk density to 0.35g/cm and the easily-degraded organic matter content of the initial material to 45% was the best combination for reaching temperatures above 70°C during composting, with no inhibitory effect on the maturity of the compost product.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2017.10.004DOI Listing

Publication Analysis

Top Keywords

bulk density
20
organic matter
20
easily-degraded organic
12
matter content
12
initial material
8
density easily-degraded
8
vegetable waste
8
composting inhibitory
8
inhibitory maturity
8
corn straw
8

Similar Publications

Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood.

View Article and Find Full Text PDF

Room-Temperature Magnetic Antiskyrmions in Canted Ferrimagnetic CoHo Alloy Films.

Adv Mater

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.

Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.

View Article and Find Full Text PDF

Pressure regulated CO electrolysis on two-dimensional BiOSe.

Chem Commun (Camb)

January 2025

Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

The electrochemical reduction of carbon dioxide (CORR) offers potential for sustainable production and greenhouse gas mitigation, particularly with renewable energy integration. However, its widespread application is hindered by expensive catalysts, low selectivity, and limited current density. This study addresses these challenges by developing a low-mass-loading two-dimensional (2D) BiOSe catalyst chemical vapor deposition (CVD).

View Article and Find Full Text PDF

Modeling suction of unsaturated granular soil treated with biochar in plant microbial fuel cell bioelectricity system.

Sci Rep

January 2025

Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.

There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).

View Article and Find Full Text PDF

Prediction of the toughness of date palm fruit.

Sci Rep

January 2025

Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.

This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!