Electrogenerated chemiluminescence aptasensor for lysozyme based on copolymer nanospheres encapsulated black phosphorus quantum dots.

Talanta

School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, Maanshan 243002, China.

Published: July 2019

AI Article Synopsis

Article Abstract

Black phosphorus quantum dots (BPQDs) can react with Ru(bpy) to generate strong anodic electrogenerated chemiluminescence (ECL). However, the instability and the lack of functional groups on BPQDs limit its further application in the fabrication of ECL biosensor. In the present work, uniform BPQDs-styrene-acrylamide (St-AAm) nanospheres (BSAN) are synthesized by encapsulating BPQDs into St-AAm copolymer nanospheres. Sufficient amount of BPQDs can be embedded into nanospheres, and react with Ru(bpy) to generate strong anodic ECL which is comparable to that of pure BPQDs. Amino group of polymer endows BPQDs the ability to connect with DNA, and can be used to fabricate ECL aptasensor for the sensitive detection of lysozyme. The proposed aptasensor shows high sensitivity, good selectivity and stability for the detection of lysozyme in the range of 0.1-100 pg mL with a detection limit of 0.029 pg mL (3σ). The proposed method reveals the promising ECL sensing application of BP nanomaterials in the detection of various proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2019.02.099DOI Listing

Publication Analysis

Top Keywords

electrogenerated chemiluminescence
8
copolymer nanospheres
8
black phosphorus
8
phosphorus quantum
8
quantum dots
8
react rubpy
8
rubpy generate
8
generate strong
8
strong anodic
8
detection lysozyme
8

Similar Publications

Probing Single-Particle Electrocatalytic Stability: Electrogenerated Chemiluminescence Imaging of Nanoparticle Array.

J Phys Chem Lett

December 2024

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.

Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs.

View Article and Find Full Text PDF

Coordination-Based Site-Specific Labeling Strategy for Electrogenerated Chemiluminescence Biosensing of Matrix Metalloproteinase 2.

Anal Chem

December 2024

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.

Matrix metalloproteinase 2 (MMP-2) is an important biomarker for some diseases. Herein, one first-case coordination-based site-specific labeling strategy is proposed for electrogenerated chemiluminescence (ECL) biosensing of MMP-2 by employing an iridium(III) solvent complex as a signal reagent and a histidine (His)-containing peptide as a molecular recognition substrate. One ECL probe was prepared via coordination labeling of the His-containing peptide with one iridium(III) solvent complex ([(3-(2-pyridyl)benzoic acid)Ir(DMSO)Cl], Ir1-DMSO).

View Article and Find Full Text PDF

This study developed a dual-mode "on-off-on" sensor based on a bipyridine ruthenium metal-organic framework (Ru-MOF) and dual enzyme cleavage technology for the sensitive detection of the K-ras gene. The sensor combines electrogenerated chemiluminescence (ECL) and fluorescence (FL) detection modes, achieving high sensitivity and specificity in detecting the K-ras gene through catalytic hairpin assembly (CHA) and dual enzyme cleavage reactions. Experimental results showed that the detection limits for the K-ras gene were 0.

View Article and Find Full Text PDF

Microbubbles, inside-out microdroplets, act as extraordinary microreactors to facilitate thermodynamically unfavorable reactions in bulk solutions of water. We explored the formation of hydrogen peroxide (HO) and its sustained regeneration at the interface of water-gas microbubbles. For this purpose, the chemiluminescence of luminol was recorded by a digital camera to map the intensity of blue light emission over the time of about 20 min.

View Article and Find Full Text PDF

Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!