Black phosphorus quantum dots (BPQDs) can react with Ru(bpy) to generate strong anodic electrogenerated chemiluminescence (ECL). However, the instability and the lack of functional groups on BPQDs limit its further application in the fabrication of ECL biosensor. In the present work, uniform BPQDs-styrene-acrylamide (St-AAm) nanospheres (BSAN) are synthesized by encapsulating BPQDs into St-AAm copolymer nanospheres. Sufficient amount of BPQDs can be embedded into nanospheres, and react with Ru(bpy) to generate strong anodic ECL which is comparable to that of pure BPQDs. Amino group of polymer endows BPQDs the ability to connect with DNA, and can be used to fabricate ECL aptasensor for the sensitive detection of lysozyme. The proposed aptasensor shows high sensitivity, good selectivity and stability for the detection of lysozyme in the range of 0.1-100 pg mL with a detection limit of 0.029 pg mL (3σ). The proposed method reveals the promising ECL sensing application of BP nanomaterials in the detection of various proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.02.099 | DOI Listing |
J Phys Chem Lett
December 2024
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China.
Matrix metalloproteinase 2 (MMP-2) is an important biomarker for some diseases. Herein, one first-case coordination-based site-specific labeling strategy is proposed for electrogenerated chemiluminescence (ECL) biosensing of MMP-2 by employing an iridium(III) solvent complex as a signal reagent and a histidine (His)-containing peptide as a molecular recognition substrate. One ECL probe was prepared via coordination labeling of the His-containing peptide with one iridium(III) solvent complex ([(3-(2-pyridyl)benzoic acid)Ir(DMSO)Cl], Ir1-DMSO).
View Article and Find Full Text PDFBioelectrochemistry
February 2025
Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China. Electronic address:
This study developed a dual-mode "on-off-on" sensor based on a bipyridine ruthenium metal-organic framework (Ru-MOF) and dual enzyme cleavage technology for the sensitive detection of the K-ras gene. The sensor combines electrogenerated chemiluminescence (ECL) and fluorescence (FL) detection modes, achieving high sensitivity and specificity in detecting the K-ras gene through catalytic hairpin assembly (CHA) and dual enzyme cleavage reactions. Experimental results showed that the detection limits for the K-ras gene were 0.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Microbubbles, inside-out microdroplets, act as extraordinary microreactors to facilitate thermodynamically unfavorable reactions in bulk solutions of water. We explored the formation of hydrogen peroxide (HO) and its sustained regeneration at the interface of water-gas microbubbles. For this purpose, the chemiluminescence of luminol was recorded by a digital camera to map the intensity of blue light emission over the time of about 20 min.
View Article and Find Full Text PDFChemElectroChem
August 2024
Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021.
Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!