Purpose: Frontotemporal dementia (FTD) is a neurodegenerative disorder associated with a poor prognosis and a substantial reduction in quality of life. The rate of misdiagnosis of FTD is very high, with patients often waiting for years without a firm diagnosis. This study investigates the current state of the misdiagnosis of FTD using a novel artificial intelligence-based algorithm.

Patients & Methods: An artificial intelligence algorithm has been developed to retrospectively analyse the patient journeys of 47 individuals diagnosed with FTD (age range 52-80). The algorithm analysed the efficiency of patient pathways by utilizing a reward signal of ‒1 to +1 to assess the symptoms, imaging techniques, and clinical judgement in both behavioural and language variants of the disease.

Results: On average, every patient was subjected to 4.93 investigations, of which 67.4% were radiological scans. From first presentation it took on average 939 days for a firm diagnosis. The mean time between appointments was 204 days, and the average patient had their diagnosis altered 7.37 times during their journey. The algorithm proposed improvements by evaluating the interventions that resulted in a decreased reward signal to both the individual and the population as a whole.

Conclusions: The study proves that the algorithm can efficiently guide clinical practice and improve the accuracy of the diagnosis of FTD whilst making the process of auditing faster and more economically viable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.advms.2019.03.002DOI Listing

Publication Analysis

Top Keywords

frontotemporal dementia
8
symptoms imaging
8
clinical judgement
8
misdiagnosis ftd
8
firm diagnosis
8
reward signal
8
average patient
8
ftd
5
diagnostic accuracy
4
accuracy frontotemporal
4

Similar Publications

Azygos Vein Stenosis in Frontotemporal Dementia Sagging Brain Syndrome.

AJNR Am J Neuroradiol

January 2025

Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology (J.D.S., Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

Background And Purpose: Symptoms indistinguishable from behavioral-variant frontotemporal dementia (bvFTD) can develop in patients with spontaneous intracranial hypotension associated with severe brain sagging. An underlying spinal CSF leak can be identified in only a minority of these patients and the success rate of nondirected treatments, such as epidural blood patching and dural reduction surgery, is low. The disability associated with bvFTD sagging brain syndrome is high and, because of the importance of the venous system in the pathophysiology of CSF leaks in general, we have investigated the systemic venous circulation in those patients with recalcitrant symptoms.

View Article and Find Full Text PDF

Neurodegenerative Disorders in Criminal Offending and Cognitive Decline Among Aging Inmates.

NeuroSci

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy.

Dementia, including Alzheimer's disease (AD) and frontotemporal dementia (FTD), presents critical challenges for correctional systems, particularly as global populations age. AD, affecting 60-80% of dementia cases, primarily impairs memory and cognition in individuals over 65. In contrast, FTD, rarer than AD but not uncommon in those under 65, affects the frontal and temporal brain regions, leading to deficits in social behavior, language, and impulse control, often resulting in antisocial actions and legal consequences.

View Article and Find Full Text PDF

Long-Term Multimodal Exercise Intervention for Patients with Frontotemporal Lobar Degeneration: Feasibility and Preliminary Outcomes.

Dement Geriatr Cogn Dis Extra

December 2024

Division of Clinical Medicine, Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.

Introduction: After Alzheimer's disease, frontotemporal lobar degeneration (FTLD) is the second most common form of early-onset dementia. Despite the heavy burden of care for FTLD, pharmacological and non-pharmacological treatments with sufficient efficacy remain scarce. This study aimed to evaluate the feasibility of a multimodal exercise program for FTLD and to examine preliminary changes in the clinical outcomes of the program in FTLD.

View Article and Find Full Text PDF

The natural compound orotic acid and its anionic form, orotate, play a pivotal role in various biological processes, serving as essential intermediates in pyrimidine de novo synthesis, with demonstrated connections to dietary, supplement, and neurodrug applications. A novel perspective on biomolecular aggregation at the nanoscale, particularly pertinent to neurodegeneration, challenges the established paradigm positing that peptide (amyloid beta) and protein (tau) aggregation mainly govern the molecular events underlying prevalent neuropathologies. Emerging biological evidence indicates a notable role for G-quadruplex (G4) DNA aggregation in neurodegenerative processes affecting neuronal cells, particularly in the presence of extended (GC) repeats in nuclear DNA sequences.

View Article and Find Full Text PDF

Background And Objectives: Chronic kidney disease (CKD) is known to be associated with increased plasma phosphorylated tau217 (p-tau217) concentrations, potentially confounding the utility of plasma p-tau217 measurements as a marker of amyloid pathology in individuals with suspected Alzheimer disease (AD). In this study, we quantitatively investigate the relationship of plasma p-tau217 concentrations vs estimated glomerular filtration rate (eGFR) in individuals with CKD with and without amyloid pathology.

Methods: This was a retrospective examination of data from 2 observational cohorts from either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!