The myocardium is a highly structured tissue consisting of different cell types including cardiomyocytes, endothelial cells, fibroblasts, smooth muscle cells, inflammatory cells, and stem cells. Microvascular endothelial cells are the most abundant cell type in the myocardium and play crucial roles during cardiac development, in normal adult myocardium, and during myocardial diseases such as heart failure. In the last decade, epigenetic changes have been described regulating cellular function in almost every cell type in the organism. Here, we review recent evidence on different epigenetic changes that regulate intercellular communication in normal myocardium and during myocardial diseases, including cardiac remodeling. Epigenetic changes influence many intercellular communication signaling systems, including the nitric oxide, angiotensin, and endothelin signaling systems. In this review, we go beyond discussing classic endothelial function (for instance nitric oxide secretion) and will discuss epigenetic regulation of intercellular communication.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00038.2019DOI Listing

Publication Analysis

Top Keywords

intercellular communication
16
epigenetic changes
12
epigenetic regulation
8
regulation intercellular
8
endothelial cells
8
cell type
8
myocardium myocardial
8
myocardial diseases
8
signaling systems
8
nitric oxide
8

Similar Publications

Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health.

J Biomed Sci

January 2025

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.

Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.

View Article and Find Full Text PDF

Conventional chemotherapy- and radiotherapy-induced cancer senescence, which is characterized by poor proliferation, drug resistance, and senescence-associated secretory phenotype, has gained attention as contributing to cancer relapse and the development of an immunosuppressive tumor microenvironment. However, the association between cancer senescence and anti-tumor immunity is not fully understood. Here, we demonstrate that senescent cancer cells increase the level of PD-L1 by promoting its transcription and glycosylation.

View Article and Find Full Text PDF

Introduction: Placental extracellular vesicles (EVs), lipid-enclosed particles released from the placenta, can facilitate intercellular communication and are classified as micro- or nano-EVs depending on size. Placental EVs contain molecules associated with cell proliferation and death. In this study, we investigated whether treating human ovarian tumour explants with placental EVs could induce ovarian tumour cell death.

View Article and Find Full Text PDF

Background: Two-thirds of Alzheimer's Disease (AD) cases are women, and our team has identified molecular factors that relate to disease in a sex-specific manner. Here, we leverage single-cell transcriptomics from dorsolateral prefrontal cortex (N = 424) from the Religious Orders Study and Memory and Aging Project (ROS/MAP; AD Knowledge Portal syn2580853) to characterize sex-specific contributors at cellular resolution.

Method: Single-nucleic RNAseq data was generated and processed as previously described.

View Article and Find Full Text PDF

Background: The characterization of intercellular communication between peripheral immune cells and the central nervous system (CNS) are essential for understanding the brain's response to aging and disease states, such as Alzheimer's disease. MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that play a crucial role in regulating various biological and pathological processes, including those related to immunity and inflammation. MiR-223-3p, residing on the X chromosome, is a pivotal miRNA involved in the inflammatory response, with its expression being enriched in macrophages/microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!