Topological Protection Can Arise from Thermal Fluctuations and Interactions.

Phys Rev Lett

The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.

Published: March 2019

Topological quantum and classical materials can exhibit robust properties that are protected against disorder, for example, for noninteracting particles and linear waves. Here, we demonstrate how to construct topologically protected states that arise from the combination of strong interactions and thermal fluctuations inherent to soft materials or miniaturized mechanical structures. Specifically, we consider fluctuating lines under tension (e.g., polymer or vortex lines), subject to a class of spatially modulated substrate potentials. At equilibrium, the lines acquire a collective tilt proportional to an integer topological invariant called the Chern number. This quantized tilt is robust against substrate disorder, as verified by classical Langevin dynamics simulations. This robustness arises because excitations in this system of thermally fluctuating lines are gapped by virtue of interline interactions. We establish the topological underpinning of this pattern via a mapping that we develop between the interacting-lines system and a hitherto unexplored generalization of Thouless pumping to imaginary time. Our work points to a new class of classical topological phenomena in which the topological signature manifests itself in a structural property observed at finite temperature rather than a transport measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.118001DOI Listing

Publication Analysis

Top Keywords

thermal fluctuations
8
fluctuating lines
8
topological
6
topological protection
4
protection thermal
4
fluctuations interactions
4
interactions topological
4
topological quantum
4
quantum classical
4
classical materials
4

Similar Publications

Study on Long-Term Temperature Variation Characteristics of Concrete Bridge Tower Cracks Based on Deep Learning.

Sensors (Basel)

January 2025

Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.

Monitoring existing cracks is a critical component of structural health monitoring in bridges, as temperature fluctuations significantly influence crack development. The study of the Huai'an Bridge indicated that concrete cracks predominantly occur near the central tower, primarily due to temperature variations between the inner and outer surfaces. This research aims to develop a deep learning model utilizing Long Short-Term Memory (LSTM) neural networks to predict crack depth based on the thermal variations experienced by the main tower.

View Article and Find Full Text PDF

Bridge expansion joints are critical components that accommodate the movement of a bridge caused by temperature fluctuations, concrete shrinkage, and vehicular loads. Analyzing the spatiotemporal deformation of these expansion joints is essential for monitoring bridge safety. This study investigates the deformation characteristics of Hongtang Bridge in Fuzhou, China, using synthetic aperture radar interferometry (InSAR).

View Article and Find Full Text PDF

The Marcus semi-classical and quantum theories of electron transfer (ET) have been extensively used to understand and predict tunneling ET reaction rates in the condensed phase. Previously, the traditional Marcus two-state model has been extended to a three-state model, which assumes a harmonic dependence of donor (D), bridge (B), and acceptor (A) free energies on the reaction (e.g.

View Article and Find Full Text PDF

In-Situ Cross-Linked Polymers for Enhanced Thermal Cycling Stability in Flexible Perovskite Solar Cells.

Angew Chem Int Ed Engl

December 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.

Flexible perovskite solar cells (FPSCs) are a promising emerging photovoltaic technology, with certified power conversion efficiencies reaching 24.9 %. However, the frequent occurrence of grain fractures and interface delamination raises concerns about their ability to endure the mechanical stresses caused by temperature fluctuations.

View Article and Find Full Text PDF

The influence of thermal and hypoxia induced habitat compression on walleye (Sander vitreus) movements in a temperate lake.

Mov Ecol

January 2025

Great Lakes Laboratory for Fisheries and Aquatic Science, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON, Canada.

Background: Globally, temperate lakes are experiencing increases in surface water temperatures, extended periods of summer stratification, and decreases of both surface and deep water dissolved oxygen (DO). The distribution of fish is influenced by a variety of factors, but water temperature and dissolved oxygen are known to be particularly constraining such that with climate change, fish will likely feel the "squeeze" from above and below.

Methods: This study used acoustic telemetry to explore the effects of both thermal stratification and the deoxygenation of the hypolimnion on walleye (Sander vitreus) movements in a coastal embayment in Lake Ontario.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!