Tailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co_{50}Fe_{50} thin films with a maximum-minimum damping ratio of 400%, determined by broadband spin-torque ferromagnetic resonance as well as inductive ferromagnetic resonance. We conclude that the origin of this damping anisotropy is the variation of the spin orbit coupling for different magnetization orientations in the cubic lattice, which is further corroborated from the magnitude of the anisotropic magnetoresistance in Co_{50}Fe_{50}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.117203DOI Listing

Publication Analysis

Top Keywords

gilbert damping
12
thin films
8
damping anisotropy
8
ferromagnetic resonance
8
damping
5
giant anisotropy
4
anisotropy gilbert
4
damping epitaxial
4
epitaxial cofe
4
cofe films
4

Similar Publications

Is Semiconducting Transition-Metal Dichalcogenide Suitable for Spin Pumping?

Nano Lett

December 2024

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.

Spin pumping has been reported on interfaces formed with ferromagnetic metals and layered transition-metal dichalcogenides (TMDs), as signified by enhanced Gilbert damping parameters extracted from magnetodynamics measurements. However, whether the observed damping enhancement purely arises from the pumping effect has remained debatable, given that possible extrinsic disturbances on the interfaces cannot be excluded in most of the experiments. Here, we explore an atomically clean interface formed with CoFeB and atomically thin MoSe, achieved by an all growth strategy based on molecular beam epitaxy.

View Article and Find Full Text PDF

Extremely Large Anisotropy of Effective Gilbert Damping in Half-Metallic CrO.

Nano Lett

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China.

Half-metals are a class of quantum materials with 100% spin polarization at the Fermi level and have attracted a lot of attention for future spintronic device applications. CrO is one of the most promising half-metal candidates for which the electrical and magnetic properties have been intensively studied in the last several decades. Here, we report the observation of a giant anisotropy (∼1600%) of effective Gilbert damping in the single-crystalline half-metallic (100)-CrO thin films, which is significantly larger than the values observed on conventional ferromagnetic Fe and CoFe thin films.

View Article and Find Full Text PDF

Half-metallic materials are widely used as spintronic devices such as electrodes, magnetic tunneling junction, and giant magnetoresistance. In this work, we have systematically investigated the structural stability, Gilbert damping, electronic structure, and magnetism together with exchange interactions and Curie temperatures for MnTaAl and MnWAl alloys. Initially, we estimate their structural stability and offer possible phase synthesis.

View Article and Find Full Text PDF
Article Synopsis
  • Intrinsic activation MR elastography (iMRE) uses heartbeats to evaluate tissue stiffness in focal liver lesions, aiming to better distinguish between malignant and benign types compared to extrinsic MR elastography (eMRE).
  • In a study with 55 participants, both iMRE and eMRE were performed, revealing that malignant lesions had significantly higher shear stiffness and damping ratio than benign ones, especially observed in measurements at various frequencies.
  • The effectiveness of iMRE and eMRE in differentiating lesions was quantified, with areas under the receiver operating characteristic curves (AUC) indicating strong overall diagnostic performance for both techniques, particularly with iMRE and eMRE's shear stiffness values.
View Article and Find Full Text PDF

Half-metallic Co-based full Heusler alloys have captured considerable attention of researchers in the realm of spintronic applications, owing to their remarkable characteristics such as exceptionally high spin polarization at the Fermi level, ultra-low Gilbert damping, and a high Curie temperature. In this comprehensive study, employing the density functional theory, we delve into the electronic stability and ballistic spin transport properties of a magnetic tunneling junction (MTJ) comprising a CoMnSb/HfIrSb interface. An in-depth investigation of -dependent spin transmissions uncovers the occurrence of coherent tunneling for the Mn-Mn/Ir interface, particularly when a spacer layer beyond a certain thickness is employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!