Carbon nanothreads are a new one-dimensional sp-bonded nanomaterial of CH stoichiometry synthesized from benzene at high pressure and room temperature by slow solid-state polymerization. The resulting threads assume crystalline packing hundreds of micrometers across. We show high-resolution electron microscopy (HREM) images of hexagonal arrays of well-aligned thread columns that traverse the 80-100 nm thickness of the prepared sample. Diffuse scattering in electron diffraction reveals that nanothreads are packed with axial and/or azimuthal disregistry between them. Layer lines in diffraction from annealed nanothreads provide the first evidence of translational order along their length, indicating that this solid-state reaction proceeds with some regularity. HREM also reveals bends and defects in nanothread crystals that can contribute to the broadening of their diffraction spots, and electron energy-loss spectroscopy confirms them to be primarily sp-hybridized, with less than 27% sp carbon, most likely associated with partially saturated "degree-4" threads.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b13405 | DOI Listing |
Nano Lett
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing 100193, P. R. China.
Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing 100193, P. R. China.
Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. The selection of suitable functionalized molecular precursors is crucial for obtaining the desired structures and functions. In this work, 1,4-difluorobenzene (1,4-DFB) was selected as the building block for PIP.
View Article and Find Full Text PDFJ Chem Phys
December 2023
Dipartimento di Chimica "Ugo Schiff, " Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy.
The high-pressure synthesis of double-core nanothreads derived from pseudo-stilbene crystals represents a captivating approach to isolate within the thread chromophores or functional groups without altering its mechanical properties. These entities can be effectively utilized to finely tune optical properties or as preferential sites for functionalization. Bibenzyl, being isostructural with other members of this class, represents the ideal system for building co-crystals from which we can synthesize double-core nanothreads wherein bridging chromophores, such as the azo or ethylene moieties, are embedded in the desired concentration within a fully saturated environment.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2023
Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA.
Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid.
View Article and Find Full Text PDFJ Chem Phys
January 2023
LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, Sesto Fiorentino, I-50019 Firenze, Italy.
Carbon nanothreads are the most exciting carbon based nanomaterials recently discovered. Obtained by compressing aromatics around 20 GPa, they are characterized by potentially exceptional mechanical properties. The reaction mechanisms have been partly elucidated through computational studies and x-ray diffraction experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!