Endothelial and epithelial cells usually grow on a curved environment, at the surface of organs, which many techniques have tried to reproduce. Here a simple method is proposed to control curvature of the substrate. Prestrained thin elastomer films are treated by infrared laser irradiation in order to rigidify the surface of the film. Wrinkled morphologies are produced upon stress relaxation for irradiation doses above a critical value. Wrinkle wavelength and depth are controlled by the prestrain, the laser power, and the speed at which the laser scans the film surface. Stretching of elastomer substrates with a "sand clock"-width profile enables the generation of a stress gradient, which results in patterns of wrinkles with a depth gradient. Thus, different combinations of topography changes on the same substrate can be generated. The wavelength and the depth of the wrinkles, which have the characteristic values within a range of several tens of µm, can be dynamically regulated by the substrate reversible stretching. It is shown that these anisotropic features are efficient substrates to control polarization of cell shapes and orientation of their migration. With this approach a flexible tool is provided for a wide range of applications in cell biophysics studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201900162 | DOI Listing |
Mater Horiz
January 2025
School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India, 502284. Electronic address:
The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Smart Material Systems, ZeMA-Center for Mechatronics and Automation Technology, 66121 Saarbruecken, Germany.
The integration of textile-based sensing and actuation elements has become increasingly important across various fields, driven by the growing demand for smart textiles in healthcare, sports, and wearable electronics. This paper presents the development of a small, smart dielectric elastomer (DE)-based sensing array designed for user control input in applications such as human-machine interaction, virtual object manipulation, and robotics. DE-based sensors are ideal for textile integration due to their flexibility, lightweight nature, and ability to seamlessly conform to surfaces without compromising comfort.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, USA.
The interplay between thin film hydrodynamics and solidification produces formidably intricate geophysical structures, such as stalactites and icicles, whose shape is a testimony of their long growth. In simpler settings, liquid films can also produce regular patterns. When coated on the underside of a flat plate, these films are unstable and yield lattices of drops following the Rayleigh-Taylor instability.
View Article and Find Full Text PDFSci Adv
November 2024
Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!