The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482039 | PMC |
http://dx.doi.org/10.1210/en.2019-00088 | DOI Listing |
Thyroid
January 2021
Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
The type 2 deiodinase (DIO2) converts thyroxine to 3,3',5-triiodothyronine (T3), modulating intracellular T3. An increase in DIO2 within muscle stem cells during skeletal muscle regeneration leads to T3-dependent potentiation of differentiation. The muscle stem cell niche comprises numerous cell types, which coordinate the regeneration process.
View Article and Find Full Text PDFThe type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue.
View Article and Find Full Text PDFThyroid
April 2017
1 Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois.
Background: Myogenesis is positively regulated by thyroid hormone (triiodothyronine [T3]), which is amplified by the type 2 deiodinase (D2) activation of thyroxine to T3. Global inactivation of the Dio2 gene impairs skeletal muscle (SKM) differentiation and regeneration in response to muscle injury. Given that newborn and adult mice with late developmental SKM Dio2 disruption do not develop a significant phenotype, it was hypothesized that D2 plays an early role in this process.
View Article and Find Full Text PDFJ Physiol
September 2016
Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA.
Key Points: In skeletal muscle, physical exercise and thyroid hormone mediate the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1a) expression that is crucial to skeletal muscle mitochondrial function. The expression of type 2 deiodinase (D2), which activates thyroid hormone in skeletal muscle is upregulated by acute treadmill exercise through a β-adrenergic receptor-dependent mechanism. Pharmacological block of D2 or disruption of the Dio2 gene in skeletal muscle fibres impaired acute exercise-induced PGC-1a expression.
View Article and Find Full Text PDFEndocrinology
October 2015
Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil.
The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!