Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Small RNAs (sRNAs) are short noncoding RNAs that play roles in many biological processes, including drought responses in plants. However, how the expression of sRNAs dynamically changes with the gradual imposition of drought stress in plants is largely unknown. We generated time-series sRNA sequence data from maize ( L.) seedlings under drought stress (DS) and under well-watered (WW) conditions at the same time points. Analyses of length, functional annotation, and abundance of 736,372 nonredundant sRNAs from both DS and WW data, as well as genome copy numbers at the corresponding genomic regions, revealed distinct patterns of abundance and genome organization for different sRNA classes. The analysis identified 6646 sRNAs whose regulation was altered in response to drought stress. Among drought-responsive sRNAs, 1325 showed transient downregulation by the seventh day, coinciding with visible symptoms of drought stress. The profiles revealed drought-responsive microRNAs, as well as other sRNAs that originated from ribosomal RNAs (rRNAs), splicing small nuclear RNAs, and small nucleolar RNAs (snoRNA). Expression profiles of their sRNA derivers indicated that snoRNAs might play a regulatory role through regulating the stability of rRNAs and splicing small nuclear RNAs under drought condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3835/plantgenome2018.08.0058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!