The application of strontium is one option for the clinical treatment of osteoporosis-a disease characterized by reduced bone density and quality-in order to reduce the risk of vertebral and nonvertebral fractures. Unlike other drugs used in osteoporosis therapy, strontium shows a dual effect on bone metabolism by attenuating cellular resorption and simultaneously enhancing new bone tissue formation. Current concerns regarding the systemic application of highly dosed strontium ranelate led to the development of strontium-modified scaffolds based on mineralized collagen (MCM) capable to release biologically active Sr ions directly at the fracture site. In this study, we investigated the regenerative potential of these scaffolds. For in vitro investigations, human mesenchymal stromal cells were cultivated on the scaffolds for 21 days (w/ and w/o osteogenic supplements). Biochemical analysis revealed a significant promoting effect on proliferation rate and osteogenic differentiation on strontium-modified scaffolds. In vivo, scaffolds were implanted in a murine segmental bone defect model-partly additionally functionalized with the osteogenic growth factor bone morphogenetic protein 2 (BMP-2). After 6 weeks, bridging calluses were obtained in BMP-2 functionalized scaffolds; the quality of the newly formed bone tissue by means of morphological scores was clearly enhanced in strontium-modified scaffolds. Histological analysis revealed increased numbers of osteoblasts and blood vessels, decreased numbers of osteoclasts, and significantly enhanced mechanical properties. These results indicate that the combined release of Sr ions and BMP-2 from the biomimetic scaffolds is a promising strategy to enhance bone regeneration, especially in patients suffering from osteoporosis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:174-182, 2020.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.34376 | DOI Listing |
Polymers (Basel)
April 2024
Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine at Technische Universität Dresden, 01307 Dresden, Germany.
A promising therapeutic option for the treatment of critical-size mandibular defects is the implantation of biodegradable, porous structures that are produced patient-specifically by using additive manufacturing techniques. In this work, degradable poly(DL-lactide) polymer (PDLLA) was blended with different mineral phases with the aim of buffering its acidic degradation products, which can cause inflammation and stimulate bone regeneration. Microparticles of CaCO, SrCO, tricalcium phosphates (α-TCP, β-TCP), or strontium-modified hydroxyapatite (SrHAp) were mixed with the polymer powder following processing the blends into scaffolds with the Arburg Plastic Freeforming 3D-printing method.
View Article and Find Full Text PDFPolymers (Basel)
February 2024
Department of Chemistry, Tsinghua University, Beijing 100084, China.
In recent years, the incidence of bone defects has been increasing year by year. Bone transplantation has become the most needed surgery after a blood transfusion and shows a rising trend. Three-dimensional-printed implants can be arbitrarily shaped according to the defects of tissues and organs to achieve perfect morphological repair, opening a new way for non-traumatic repair and functional reconstruction.
View Article and Find Full Text PDFBiomater Sci
August 2023
Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
Their excellent mechanical properties, degradability and suitability for processing by 3D printing technologies make the thermoplastic polylactic acid and its derivatives favourable candidates for biomaterial-based bone regeneration therapies. In this study, we investigated whether bioactive mineral fillers, which are known to promote bone healing based on their dissolution products, can be integrated into a poly(L-lactic--glycolic) acid (PLLA-PGA) matrix and how key characteristics of degradation and cytocompatibility are influenced. The polymer powder was mixed with particles of CaCO, SrCO, strontium-modified hydroxyapatite (SrHAp) or tricalcium phosphates (α-TCP, β-TCP) in a mass ratio of 90 : 10; the resulting composite materials have been successfully processed into scaffolds by the additive manufacturing method Arburg Plastic Freeforming (APF).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2021
Technical University of Denmark, DTU Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands.
In bone tissue engineering, ionic doping using bone-related minerals such as magnesium (Mg) or strontium (Sr) is a promising strategy to make up for the inherent disadvantages (low solubility) of various apatite-based materials (such as fluorapatite (FAp) and hydroxyapatite (HA)). Therefore, some studies in recent years have tried to address the lack-of-methodology to improve the properties of bioceramics in the field. Even though the outcome of the studies has shown some promises, the influence of doped elements on the structures and properties of in-vitro and in-vivo mineralized FAp has not been investigated in detail so far.
View Article and Find Full Text PDFMaterials (Basel)
December 2020
Department of Química en Ciencias Farmacéuticas, Faculty of Farmacia, Universidad Complutense, UCM, Instituto de Investigación Hospital 12 de Octubre, imas12, 28040 Madrid, Spain.
In the search of a new biomaterial for the treatment of bone defects resulting from traumatic events, an osteoporosis scenario with bone fractures, tumor removal, congenital pathologies or implant revisions for infection, we developed 3D scaffolds based on mesoporous bioactive glasses (MBGs) (85-x)SiO-5PO-10CaO-xSrO (x = 0, 2.5 and 5 mol.%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!