Inspired by the recent interest of halogen bonding (XB) in the solid state, we detail a comprehensive benchmark study of planewave DFT geometry and interaction energy of lone-pair (LP) type and aromatic (AR) type halogen bonded complexes, using PAW and USPP pseudopotentials. For LP-type XB dimers, PBE-PAW generally agrees with PBE/aug-cc-pVQZ(-pp) geometries but significantly overbinds compared to CCSD(T)/aug-cc-pVQZ(-pp). Grimme's D3 dispersion corrections to PBE-PAW gives better agreement to the MP2/cc-pVTZ(-pp) results for AR-type dimers. For interaction energies, PBE-PAW may overbind or underbind for weaker XBs but clearly overbinds for stronger XBs. D3 dispersion corrections exacerbate the overbinding problem for LP-type complexes but significantly improves agreement for AR-type complexes compared to CCSD(T)/CBS. Finally, for periodic XB crystals, planewave PBE methods slightly underestimate the XB lengths by 0.03 to 0.05 Å. © 2019 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.25835 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!