A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. | LitMetric

Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract.

Food Funct

Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.

Published: April 2019

Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including gastrointestinal health. The objective of this work was to evaluate the chemical composition and biological activities of an enzymatic GP extract, as well as to investigate how gastrointestinal digestion (GID) modulates these properties. GP extract was previously produced using an enzymatic cocktail with xylanase activity and was then exposed to simulated conditions of GID, characterized for its chemical composition, and screened for antimicrobial, prebiotic, and antioxidant activities. The safety of this ingredient after GID was also assessed. GP extract presented high contents of dietary fiber and other carbohydrates, including xylooligosaccharides, in addition to minerals and phenolic compounds. In vitro simulated GID revealed that xylobiose was resistant to gastric conditions, unlike phenolic compounds. The use of 2% (w/v) of this ingredient proved to be a potential carbon source that could be fermented by Lactobacillus and Bifidobacterium spp, even after digestion. The extract also exhibited strong antioxidant and antimicrobial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa; however, after GID, the antioxidant capacity decreased, and the antimicrobial capacity was strongly reduced or lost. Furthermore, the extract safety was also guaranteed on Caco-2 intestinal cells. This novel and green GP extract proved to be composed of relevant bioactive molecules, including xylooligosaccharides, polyphenols, organic acids, and minerals, which provided different biological properties; it has potential applications in the food industry such that it can be used as an ingredient in the development of new functional foods.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fo02534gDOI Listing

Publication Analysis

Top Keywords

chemical composition
12
phenolic compounds
12
gastrointestinal digestion
8
grape pomace
8
including xylooligosaccharides
8
extract
7
gid
5
impact vitro
4
vitro gastrointestinal
4
digestion chemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!