The ability of several chelating mycotoxins to form coordination complexes with the lanthanide metals europium and terbium was explored. The mycotoxins examined included ochratoxin A, citrinin, cyclopiazonic acid (CPA), kojic acid, and tenuazonic acid (TeA). Of these compounds, TeA and CPA resulted in the greatest luminescence. Parameters influencing luminescence of TeA were investigated further. These included the type of lanthanide and its concentration, certain environmental factors, and the effect of competing metal cations. Of the two lanthanide metals, the terbium coordination complex (TeA-Tb) showed greater luminescence relative to the europium complex (TeA-Eu). The effects of solvent type, water content, and pH on the TeA-Tb system suggested that optimal conditions for luminescence were in 90% methanol with 10% aqueous buffer at pH 3. In competitive assays, the luminescence of the TeA-Tb complex decreased as the concentration of competing metal cations increased. Among the cations tested, Cu was the best inhibitor followed by Al, Au, Fe, Co, Mn, Mg, and Ca. Two cations, Na and K, showed no significant inhibition. This is the first report to describe the coordination of the metal-chelating mycotoxin TeA with lanthanides and the ability of TeA to serve as an "antenna" for the efficient transfer of energy to the lanthanide with resulting luminescence. Understanding the ability of mycotoxins such as TeA to chelate metals provides insight into how they exert their toxic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12550-019-00356-w | DOI Listing |
Chem Asian J
January 2025
University of Shanghai for Science and Technology, School of Materials and Chemistry, Shanghai, CHINA.
Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.
View Article and Find Full Text PDFThis work presents the synthesis and characterization of three isomorphous lanthanide-based metal-organic frameworks (Ln-MOFs) (Ln3+ = Eu (1), Tb (2), and Sm (3)) supported by a pyridine-2,6-dicarboxamide-based linker offering appended arylcarboxylate groups. Single crystal X-ray diffraction studies highlight that these Ln-MOFs present three-dimensional porous architectures offering large cavities decorated with hydrogen bonding (H-bonding) groups. These Ln-MOFs display noteworthy luminescent characteristics.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Radiology, Narayana Institute of Cardiac Sciences, Bangalore 560099, India (S.G., V.R.); and Department of Radiology, Amrita Institute of Medical Sciences and Research Centre, Kochi, India (R.R.).
Isostructural Dy(III) and Er(III) complexes [L12Ln(H2O)5][I]3·L12·(CH2Cl2) (Ln = Dy (1), Er (3)) and [L22Ln(H2O)5][I]3·L22·(CH2Cl2)2 (Ln = Dy (2), Er (4)), with distorted pentagonal bipyramidal geometry (D5h) around the central metal were synthesized by utilizing two bulky phosphonamide ligands, adamantyl phosphonamide, (Ad)P(O)(NHiPr)2 (L1) and carbazolyl phosphoramide (Cz)P(O)(NHiPr)2 (L2). The resultant complexes were investigated for their magnetic properties in order to elucidate the impact of modification of the coordinating P-O bond environment either by increasing steric bulk and/or introduction of a third P-N bond at the central phosphorus atom. Magnetic studies revealed substantial energy barriers (Ueff) of 640 K and 560 K for Dy compounds 1 and 2, respectively, rendering them as some of the best-performing air-stable SIMs amongst the class of SIMs with D5h symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!