Background: Cholangiocarcinoma is one of the most deadly malignant tumors characterized by a tendency of local invasiveness and metastasis at the early phase, high recurrence rate, and difficulty in treatment. Alpha7-nicotinic acetylcholine receptor (α7-nAChR) is highly expressed in a variety of tumors, including cholangiocarcinoma, and may promote tumor progression, but the mechanisms are largely unknown.
Aims: Our study is the first to expound upon the role that α7-nAChR plays in cholangiocarcinoma.
Methods: We assessed 50 human cholangiocarcinoma tissue samples and 20 normal biliary samples using immunohistochemical staining to find the correlation between α7-nAChR expression and clinicopathological characteristics. We used human cholangiocarcinoma cell lines QBC939 and RBE and α7-nAChR gene knockdown RBE cell lines generated by shRNA lentivirus transfection to investigate the biological functions of α7-nAChR in proliferation, apoptosis, migration, and invasiveness in vitro. Further, western blotting was used to detect apoptosis and epithelial-mesenchymal transition (EMT)-related signaling proteins. Cholangiocarcinoma xenografts in nude mice were used for tumorigenicity assays in vivo.
Results: The expression of α7-nAChR was high in cholangiocarcinoma tissues and was closely related to a shorter survival time in patients. α7-nAChR knockdown decreased cell proliferation ability, increased early apoptosis, and weakened cell migration and invasion. Apoptosis-related proteins and components of the EMT process were altered after α7-nAChR knockdown. Moreover, nude mice xenograft experiments confirmed that α7-nAChR could promote cholangiocarcinoma in vitro.
Conclusions: Overexpression of α7-nAChR induces cholangiocarcinoma progression by blocking apoptosis and promoting the EMT process. As an effective molecular biomarker and prognostic factor, α7-nAChR is a promising therapeutic target in cholangiocarcinoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-019-05609-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!