A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HER3-Targeted Affibodies with Optimized Formats Reduce Ovarian Cancer Progression in a Mouse Xenograft Model. | LitMetric

AI Article Synopsis

  • HER3 expression negatively affects survival rates in ovarian cancer and is linked to cancer progression and drug resistance.
  • Engineering bivalent HER3 affibodies has shown promise in improving their therapeutic effectiveness by enhancing their ability to inhibit HER3 signaling and promote receptor downregulation.
  • In mouse models, these affibodies demonstrated strong efficacy alone and in combination with carboplatin, highlighting their potential for clinical applications in ovarian cancer treatment.

Article Abstract

Expression of the receptor tyrosine kinase HER3 is negatively correlated with survival in ovarian cancer, and HER3 overexpression is associated with cancer progression and therapeutic resistance. Thus, improvements in HER3-targeted therapy could lead to significant clinical impact for ovarian cancer patients. Previous work from our group established multivalency as a potential strategy to improve the therapeutic efficacy of HER3-targeted ligands, including affibodies. Others have established HER3 affibodies as viable and potentially superior alternatives to monoclonal antibodies for cancer therapy. Here, bivalent HER3 affibodies were engineered for optimized production, specificity, and function as evaluated in an ovarian cancer xenograft model. Enhanced inhibition of HER3-mediated signaling and increased HER3 downregulation associated with multivalency could be achieved with a simplified construct, potentially increasing translational potential. Additionally, functional effects of affibodies due to multivalency were found to be specific to HER3 targeting, suggesting a unique molecular mechanism. Further, HER3 affibodies demonstrated efficacy in ovarian cancer xenograft mouse models, both as single agents and in combination with carboplatin. Overall, these results reinforce the potential of HER3-targeted affibodies for cancer therapy and establish treatment of ovarian cancer as an application where multivalent HER3 ligands may be useful. Further, this work introduces the potential of HER3 affibodies to be utilized as part of clinically relevant combination therapies (e.g., with carboplatin).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261481PMC
http://dx.doi.org/10.1208/s12248-019-0318-xDOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
her3 affibodies
16
cancer
9
her3
9
her3-targeted affibodies
8
cancer progression
8
xenograft model
8
cancer therapy
8
cancer xenograft
8
affibodies
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!