Purpose: To determine the degree of conversion (DC), physicochemical properties, and microshear bond strength (µSBS) of experimental self-adhesive resin cements (SARCs) to dentin and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic.

Materials And Methods: Dual-curing cements were formulated with UDMA, HEMA, bis-GMA, and TEG-DMA as the organic matrix. 2MP (bis 2-(methacryloyloxy)-ethyl-phosphate) and GDMAP (1,3-glycerol dimethacrylate phosphate) were added to impart self-adhesive characteristics. A control group was formulated without self-etch methacrylates. Silanized particles were incorporated. Photoactivation was carried out using an LED light-curing unit (1200 mW/cm2) for 20 s. Infrared spectroscopy assessed the DC immediately and after 24 h. pH was analyzed in real time and recorded after 48 h. Water sorption (Wsp), water solubility (Wsl), and film thickness measurements followed ISO 4049. µSBS of the cements to dentin and Y-TZP was evaluated immediately and after 3 months of water storage. Y-TZP was also tested without a surface treatment and after tribochemical silica coating with subsequent application of a silane agent. The fractures patterns were classified as adhesive, cohesive, and mixed. Data were submitted to analyses of variance and Tukey's tests (α = 0.05).

Results: Control (91.7%) and 2MP (92.0%) groups generated the highest DC after 24 h. 2MP (pH = 3.6) showed the lowest pH followed by GDMAP (pH = 4.7) and control (pH = 6.4) after 48 h. The control cement exhibited lower Wsp (41.0 µg/mm3) and Wsl (4.3 µg/mm3) than the other groups. Film thickness was statistically similar (p = 0.266) for all cements. Control (27.0 MPa) and GDMAP (24.1 MPa) showed higher µSBS to dentin than 2MP (13.7 MPa) after water storage. Mixed fractures were predominant in dentin. For all cements, the µSBS to Y-TZP was < 3.0 MPa after water storage, independent of the surface treatment.

Conclusion: The results of DC, pH, Wsp and Wsl were material dependent. Only the film thickness was statistically similar for all groups. The cement formulated with GDMAP maintained the bond strengths to dentin even after aging. However, none of the groups were able to generate satisfactory bond strength to Y-TZP, independent of the surface treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3290/j.jad.a42363DOI Listing

Publication Analysis

Top Keywords

bond strength
12
film thickness
12
water storage
12
physicochemical properties
8
properties microshear
8
microshear bond
8
experimental self-adhesive
8
self-adhesive resin
8
resin cements
8
cements dentin
8

Similar Publications

We analyzed the intrinsic strength of distal and proximal FeN bonds and the stiffness of the axial NFeN bond angle in a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans. Ferric and ferrous oxidation states were considered. As assess- ment tool, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from our local mode theory.

View Article and Find Full Text PDF

Calprotectin's Protein Structure Shields Ni-N(His) Bonds from Competing Agents.

J Phys Chem Lett

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.

View Article and Find Full Text PDF

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

Nature and stability of the chemical bond in H3C-XHn (XHn = CH3, NH2, OH, F, Cl, Br, I).

J Chem Phys

January 2025

Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands, https://www.theochem.nl.

We have quantum chemically analyzed the trends in bond dissociation enthalpy (BDE) of H3C-XHn single bonds (XHn = CH3, NH2, OH, F, Cl, Br, I) along three different dissociation pathways at ZORA-BLYP-D3(BJ)/TZ2P: (i) homolytic dissociation into H3C∙ + ∙XHn, (ii) heterolytic dissociation into H3C+ + -XHn, and (iii) heterolytic dissociation into H3C- + +XHn. The associated BDEs for the three pathways differ not only quantitatively but, in some cases, also in terms of opposite trends along the C-X series. Based on activation strain analyses and quantitative molecular orbital theory, we explain how these differences are caused by the profoundly different electronic structures of, and thus bonding mechanisms between, the resulting fragments in the three different dissociation pathways.

View Article and Find Full Text PDF

We derive a new expression for the strength of a hydrogen bond (VHB) in terms of the elongation of the covalent bond of the donor fragment participating in the hydrogen bond (ΔrHB) and the intermolecular coordinates R (separation between the heavy atoms) and θ (deviation of the hydrogen bond from linearity). The expression includes components describing the covalent D-H bond of the hydrogen bond donor via a Morse potential, the Pauli repulsion, and electrostatic interactions between the constituent fragments using a linear expansion of their dipole moment and a quadratic expansion of their polarizability tensor. We fitted the parameters of the model using ab initio electronic structure results for six hydrogen bonded dimers, namely, NH3-NH3, H2O-H2O, HF-HF, H2O-NH3, HF-H2O, and HF-NH3, and validated its performance for extended parts of their potential energy surfaces, resulting in a mean absolute error ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!