MicroRNA-15a-5p Regulates the Development of Osteoarthritis by Targeting PTHrP in Chondrocytes.

Biomed Res Int

Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, China.

Published: July 2019

Background And Aims: A growing body of research has demonstrated that the degeneration of chondrocytes is the primary cause of osteoarthritis (OA). Parathyroid hormone-related protein (PTHrP) can alleviate the degeneration of chondrocytes via promotion of chondrocyte proliferation and inhibition of terminal differentiation, but the underlying mechanism remains unknown. This study aimed to identify the microRNAs (miRNAs) that may target PTHrP and regulate the proliferation and terminal differentiation of chondrocytes.

Methods: Bioinformatic analysis was used to predict which miRNAs target PTHrP. We collected human knee cartilage specimens to acquire the primary chondrocytes, which we then used to test the expression and function of the targeted miRNAs. To explore the effects of miR-15a-5p on the putative binding sites, specific mimics or inhibitors were transfected into the chondrocytes. Furthermore, a dual-luciferase reporter gene assay and chondrocyte degeneration-related factors were used to verify the possible mechanism.

Results: The expression of PTHrP was upregulated in the OA chondrocytes, whilst miR-15a-5p was downregulated in the OA chondrocytes. A negative correlation was observed between PTHrP and miR-15a-5p. The knockdown of miR-15a-5p promoted the growth of chondrocytes and inhibited calcium deposition, whilst overexpression of miR-15a-5p reversed this trend. The effect of miR-15a-5p overexpression was neutralised by PTHrP. Dual-luciferase reporter assays revealed that PTHrP can be used as a novel targeting molecule for miR-15a-5p.

Conclusions: miR-15a-5p promotes the degeneration of chondrocytes by targeting PTHrP and, in addition to helping us understand the development of OA, may be a potential biomarker of OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425345PMC
http://dx.doi.org/10.1155/2019/3904923DOI Listing

Publication Analysis

Top Keywords

degeneration chondrocytes
12
pthrp
9
chondrocytes
9
targeting pthrp
8
terminal differentiation
8
mirnas target
8
target pthrp
8
dual-luciferase reporter
8
mir-15a-5p
7
microrna-15a-5p regulates
4

Similar Publications

Objective: Osteoarthritis (OA) is the most common form of chronic joint disease, affecting mainly the elderly population. This disorder is caused by cartilage degeneration with complex changes in the chondrocyte phenotype. Inorganic pyrophosphate (PPi) was shown to counteract the detrimental effect of interleukin (IL)-1β challenging in an in vitro OA model based on rat articular chondrocytes.

View Article and Find Full Text PDF

MSAB limits osteoarthritis development and progression through inhibition of β-catenin-DDR2 signaling.

Bioact Mater

April 2025

Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is a degenerative joint disease that has no cure, and current therapies are intended to minimize pain. There is, therefore, a need for effective pharmacologic agents that reverse or slow the progression of joint damage. We report herein on an investigation of the effects of intra-articular injections of ganglioside sugars on the progression of OA in an experimental rabbit model.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a leading cause of pain, disability, and reduced mobility worldwide, characterized by metabolic imbalances in chondrocytes, extracellular matrix (ECM), and subchondral bone. Emerging evidence highlights the critical role of long non-coding RNAs (lncRNAs) in OA pathogenesis. This study focuses on lncRNA PTS-1, a novel lncRNA, to explore its function and regulatory mechanisms in OA progression.

View Article and Find Full Text PDF

Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!