Spontaneous Activation of Event Details in Episodic Future Simulation.

Front Psychol

Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, Japan.

Published: March 2019

Episodic future simulation is supported by both the retrieval and recombination of episodic details. It remains unclear, however, how individuals retrieve episodic details from memory to construct possible future scenarios; for this people must use details related to the planned future events appropriately. A potentially relevant cognitive process is the spontaneous activation of intention observed in prospective memory (i.e., the intention superiority effect). Previous studies on prospective memory have shown that the approximation of retrieval opportunities for future intentions activate related information, suggesting that the intention superiority effect is context-sensitive. We hypothesized that the same cognitive process underlies future simulation-that is, details related to future events should spontaneously become activated at the appropriate moment of future simulation to make that simulation plausible. In Experiment 1, participants took part in future experiments and formed intentions to perform particular actions for the next experiments. Subsequently, they imagined events that could occur up until they arrived at the experimental room on the day of the next experiment. During this exercise, they did not imagine engaging in the required experimental task. We measured the conceptual activation of intention-related information via a recognition task using intended action words as targets. The results showed the intention superiority effect-concepts related to participants' future intentions became active when envisioning future events approaching the next experiment. In Experiments 2 and 3, we ensured that the intention superiority effect in future simulation was context-sensitive by adding a control condition that required participants to imagine events other than the approaching future experiments. These results indicated that concepts related to the intended actions were spontaneously activated when imagined future events became both temporally and spatially close to the future simulation. Our finding suggests that spontaneous activation of details approaching the context of a future simulation helps in constructing plausible future scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437097PMC
http://dx.doi.org/10.3389/fpsyg.2019.00625DOI Listing

Publication Analysis

Top Keywords

future simulation
24
future
17
future events
16
intention superiority
16
spontaneous activation
12
episodic future
8
episodic details
8
future scenarios
8
cognitive process
8
prospective memory
8

Similar Publications

Lead-free inorganic halide perovskites, specifically BaPX (X = Cl, F, I, Br) have gained attention in green photovoltaics due to their remarkable mechanical, optical, structural, and electronic properties. Using first-principles calculations, we investigated the mechanical, electronic, and optical characteristics of BaPX, revealing direct band gaps at the -symmetry point, assessed with the PBE and HSE functionals. The charge distribution analysis shows strong ionic bonding between Ba and halides and covalent bonding between P and halides.

View Article and Find Full Text PDF

Climate change poses an unprecedented threat to forest ecosystems, necessitating innovative adaptation strategies. Traditional assisted migration approaches, while promising, face challenges related to environmental constraints, forestry practices, phytosanitary risks, economic barriers, and legal constraints. This has sparked debate within the scientific community, with some advocating for the broader implementation of assisted migration despite these limitations, while others emphasize the importance of local adaptation, which may not keep pace with the rapid rate of climate change.

View Article and Find Full Text PDF

Introduction: In-stent restenosis remains a significant challenge in coronary artery interventions. This study aims to explore the relationship between exercise intensity and stent design, focusing on the coupled response of the stent structure and hemodynamics at different exercise intensities.

Methods: A coupled balloon-stent-plaque-artery model and a fluid domain model reflecting structural deformation were developed to investigate the interaction between coronary stents and stenotic vessels, as well as their impact on hemodynamics.

View Article and Find Full Text PDF

Robust kinetics estimation from kinematics via direct collocation.

Front Bioeng Biotechnol

December 2024

Shi's Center of Orthopedics and Traumatology (Institute of Traumatology, Shuguang Hospital), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Introduction: Accurate joint moment analysis is essential in biomechanics, and the integration of direct collocation with markerless motion capture offers a promising approach for its estimation. However, markerless motion capture can introduce varying degrees of error in tracking trajectories. This study aims to evaluate the effectiveness of the direct collocation method in estimating kinetics when joint trajectory data are impacted by noise.

View Article and Find Full Text PDF

The successful onset of recovery of the European pine marten () in some parts of Britain through range expansion and, more recently translocation for reintroductions, has resulted in a strong interest in reintroduction projects throughout the country. However, the geographic scope and conservation goals of these initiatives are often local and lack consideration of how they fit within the wider context of national-scale pine marten conservation. Here, we aim to maximize conservation benefit strategically at a national level by developing a simple, transparent, and transferable framework based on landscape modelling methods and spatially explicit population viability analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!