The objective of this study was to develop a convenient and reliable adapter method for testing and evaluating vibration-reducing (VR) gloves and VR materials at the fingers. The general requirements and technical specifications for the design of the new adapter were based on our previous studies of hand-held adapters for vibration measurement and a conceptual model of the fingers-adapter-glove-handle system developed in this study. Two thicknesses (2 mm and 3 mm) of the adapter beam were fabricated using a 3-D printer. Each adapter is a thin beam equipped with a miniature tri-axial accelerometer (1.1 g) mounted at its center, with a total weight ≤ 2.2 g. To measure glove vibration transmissibility, the adapter is held with two gloved fingers; a finger is positioned on each side of the accelerometer. Each end of the adapter beam is slotted between the glove material and the finger. A series of experiments was conducted to evaluate this two-fingers-held adapter method by measuring the transmissibility of typical VR gloves and a sample VR material. The experimental results indicate that the major resonant frequency of the lightweight adapter on the VR material (≥800 Hz) is much higher than the resonant frequencies of the gloved fingers grasping a cylindrical handle (≤300 Hz). The experimental results were repeatable across the test treatments. The basic characteristics of the measured glove vibration transmissibility are consistent with the theoretical predictions based on the biodynamics of the gloved fingers-hand-arm system. The results suggest that VR glove fingers can effectively reduce only high-frequency vibration, and VR effectiveness can be increased by reducing the finger contact force. This study also demonstrated that the finger adapter method can be combined with the palm adapter method prescribed in the standardized glove test, which can double the test efficiency without substantially increasing the expense of the test.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444365 | PMC |
http://dx.doi.org/10.1016/j.measurement.2019.01.034 | DOI Listing |
Alzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Front Pharmacol
December 2024
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Introduction: The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A receptor (AR) in the PVT in regulating pain sensation and non-opioid analgesia.
Method And Results: Specifically, AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA).
Nat Commun
January 2025
State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are the minimal machinery required for vesicle fusion in eukaryotes. Formation of a highly stable four-helix bundle consisting of SNARE motif of these proteins, drives vesicle/membrane fusion involved in several physiological processes such as neurotransmission. Recycling/disassembly of the protein machinery involved in membrane fusion is essential and is facilitated by an AAA+ ATPase, N-ethylmaleimide sensitive factor (NSF) in the presence of an adapter protein, α-SNAP.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico.
Background: Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS).
View Article and Find Full Text PDFFront Immunol
December 2024
Myeloid Therapeutics, Inc., Cambridge, MA, United States.
Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!