Structure and function of polycystins: insights into polycystic kidney disease.

Nat Rev Nephrol

Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France.

Published: July 2019

Mutations in the polycystins PC1 or PC2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled renal cysts that disrupt renal architecture and function, ultimately leading to kidney failure in the majority of patients. Although the genetic basis of ADPKD is now well established, the physiological function of polycystins remains obscure and a matter of intense debate. The structural determination of both the homomeric PC2 and heteromeric PC1-PC2 complexes, as well as the electrophysiological characterization of PC2 in the primary cilium of renal epithelial cells, provided new valuable insights into the mechanisms of ADPKD pathogenesis. Current findings indicate that PC2 can function independently of PC1 in the primary cilium of renal collecting duct epithelial cells to form a channel that is mainly permeant to monovalent cations and is activated by both membrane depolarization and an increase in intraciliary calcium. In addition, PC2 functions as a calcium-activated calcium release channel at the endoplasmic reticulum membrane. Structural studies indicate that the heteromeric PC1-PC2 complex comprises one PC1 and three PC2 channel subunits. Surprisingly, several positively charged residues from PC1 occlude the ionic pore of the PC1-PC2 complex, suggesting that pathogenic polycystin mutations might cause ADPKD independently of an effect on channel permeation. Emerging reports of novel structural and functional findings on polycystins will continue to elucidate the molecular basis of ADPKD.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41581-019-0143-6DOI Listing

Publication Analysis

Top Keywords

function polycystins
8
polycystic kidney
8
kidney disease
8
basis adpkd
8
heteromeric pc1-pc2
8
primary cilium
8
cilium renal
8
epithelial cells
8
pc1-pc2 complex
8
pc2
6

Similar Publications

Gene therapy in polycystic kidney disease: A promising future.

J Transl Int Med

December 2024

Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China.

Polycystic kidney disease (PKD) is a genetic disorder marked by numerous cysts in the kidneys, progressively impairing renal function. It is classified into autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ADPKD being more common. Current treatments mainly focus on symptom relief and slowing disease progression, without offering a cure.

View Article and Find Full Text PDF

Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia.

Cells

December 2024

Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.

The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.

View Article and Find Full Text PDF

Mutations in coding sequence and abnormal PKD1 expression levels contribute to the development of autosomal-dominant polycystic kidney disease, the most common genetic disorder. Regulation of PKD1 expression by factors located in the promoter and 3´ UTR have been extensively studied. Less is known about its regulation by 5´ UTR elements.

View Article and Find Full Text PDF

The "secondhit" pathway is responsible for biallelic inactivation of many tumor suppressors, where a pathogenic germline allele is joined by somatic mutation of the remaining functional allele. The mechanisms are unresolved, but the human PKD1 tumor suppressor is a good experimental model for identifying the molecular determinants. Inactivation of PKD1 results in autosomal dominant polycystic kidney disease, a very common disorder characterized by the accumulation of fluid-filled cysts and end-stage renal disease.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD), a single-gene-inherited kidney disease, is a common cause of end-stage kidney disease (ESKD). The PKD1 gene mutation is the most common cause of ADPKD, accounting for approximately 78% of cases. ADPKD is characterized by the scattered distribution of multiple cysts in the renal parenchyma, ultimately leading to ESKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!