A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. | LitMetric

Owing to improvements in image recognition via deep learning, machine-learning algorithms could eventually be applied to automated medical diagnoses that can guide clinical decision-making. However, these algorithms remain a 'black box' in terms of how they generate the predictions from the input data. Also, high-performance deep learning requires large, high-quality training datasets. Here, we report the development of an understandable deep-learning system that detects acute intracranial haemorrhage (ICH) and classifies five ICH subtypes from unenhanced head computed-tomography scans. By using a dataset of only 904 cases for algorithm training, the system achieved a performance similar to that of expert radiologists in two independent test datasets containing 200 cases (sensitivity of 98% and specificity of 95%) and 196 cases (sensitivity of 92% and specificity of 95%). The system includes an attention map and a prediction basis retrieved from training data to enhance explainability, and an iterative process that mimics the workflow of radiologists. Our approach to algorithm development can facilitate the development of deep-learning systems for a variety of clinical applications and accelerate their adoption into clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41551-018-0324-9DOI Listing

Publication Analysis

Top Keywords

acute intracranial
8
intracranial haemorrhage
8
deep learning
8
cases sensitivity
8
specificity 95%
8
explainable deep-learning
4
deep-learning algorithm
4
algorithm detection
4
detection acute
4
haemorrhage small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!