The application of nitrogen (N) fertilizer deep in soil at the same time as mechanical transplanting of rice seedlings is an effective alternative to conventional broadcasting of fertilizer, but its effects on yields and profitability have not been analysed in detail. Here, we analysed the effects of a side deep application of N fertilizer at transplanting on the N uptake, N use efficiency (NUE), grain yield, and economic profitability of two rice (Oryza sativa L.) cultivars; Yongxian15 (early season) and Yongyou1540 (middle/late season). In the field experiments, two types of N fertilizer (urea (U) and controlled-release urea (CRU)) were surface broadcasted manually (B) or mechanically fertilized at 5.5 ± 0.5 cm soil depth (M) (UB, UM, and CRUM treatments, respectively). The blank control had no N fertilizer (N0). Each N-fertilizer treatment had similar effects on N uptake, grain yield, NUE, and economic profitability in the early, middle, and late seasons. Compared with manually applied fertilizer, mechanically applied fertilizer increased grain yield and NUE in both cultivars. In Yongxian15 and Yongyou1540, the mechanical side deep application of N-fertilizer increased the N recovery efficiency by 62.50-91.57% and 24.38-64.24%, respectively, the N agronomy efficiency by 33.65-63.14% and 22.64-44.70%, respectively; and the grain yield by 6.30-11.64% and 6.23-13.11%, respectively. The CRUM treatments had the highest benefit-cost ratio because of high gross returns and low fertilization costs. The mechanized side deep application of N fertilizer can increase the efficiency and profitability of rice production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449506PMC
http://dx.doi.org/10.1038/s41598-019-42039-7DOI Listing

Publication Analysis

Top Keywords

side deep
16
grain yield
16
deep application
12
fertilizer
8
application fertilizer
8
economic profitability
8
profitability rice
8
cultivars yongxian15
8
crum treatments
8
yield nue
8

Similar Publications

Background: Psychosocial and pharmacological interventions can effectively treat eating disorders (EDs), but improvements are often short-term and modest. Neuromodulation, altering nerve activity through targeted neurological stimulation, is an emerging intervention in neuropsychiatric disorders. This meta-review synthesizes evidence on neuromodulatory techniques in ED patients, identifying research gaps and future directions.

View Article and Find Full Text PDF

Automatic segmentation of cardiac structures can change the way we evaluate dose limits for radiotherapy in the left breast.

J Med Imaging Radiat Sci

December 2024

Department of Radiotherapy, Instituto Brasileiro de Controle do Câncer (IBCC), Avenida Alcântara Machado, 2576, Mooca, 03102-002 São Paulo, SP, Brazil; Department of Radiotherapy, Instituto de Radiologia do Hospital das Clínicas - HCFMUSP (InRad), Hospital das Clínicas, University of São Paulo, Rua Doutor Ovídio Pires de Campos, 75, Portaria 1, Cerqueira César, 05403-010 São Paulo, SP, Brazil.

Purpose: Radiotherapy is a crucial part of breast cancer treatment. Precision in dose assessment is essential to minimize side effects. Traditionally, anatomical structures are delineated manually, a time-consuming process subject to variability.

View Article and Find Full Text PDF

Continuous decoupled redox electrochemical CO capture.

Nat Commun

December 2024

State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, P.R. China.

Electrochemical CO capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process.

View Article and Find Full Text PDF

The supervision of novel psychoactive substances (NPSs) is a global problem, and the regulation of NPSs was heavily relied on identifying structural matches in established NPSs databases. However, violators could circumvent legal oversight by altering the side chain structure of recognized NPSs and the existing methods cannot overcome the inaccuracy and lag of supervision. In this study, we propose a scaffold and transformer-based NPS generation and Screening (STNGS) framework to systematically identify and evaluate potential NPSs.

View Article and Find Full Text PDF

Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.

ACS Cent Sci

December 2024

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!