Traumatic brain injury (TBI) is followed by a secondary inflammation in the brain. Neuroprotectin D1 (NPD1) is synthesized from docosahexaenoic acid (DHA) and has anti-inflammatory and antiapoptotic effects in experimental models of neurodegenerative disease and brain ischemia-reperfusion. It is not known whether intralesional administration of NPD1 ameliorates inflammation and cell death after severe TBI. We therefore investigated the effects of NPD1 following a severe form of focal penetrating TBI. A total of 30 male Sprague-Dawley rats weighing between 350 and 450 g were exposed to focal penetrating TBI or sham surgery. The rats were randomized to NPD1 treatment (50 ng intralesionally, immediately following TBI) or no treatment. The rats were sacrificed at 24 or 72 h. All subgroups consisted of 5 rats. Brains were removed, fresh frozen, cut in 14-µm coronal sections and subjected to Fluoro-Jade, TUNEL, MnSOD, 3-NT, COX-2, Ox-42 and NF-κB immuno-staining and lesion size analyses. NPD1 decreased the lesion area at 72 h compared to no treatment with a mean change 42% (NPD1 14.1 mm; no treatment 24.5 mm) (p < 0.01). No difference was detected in markers for neuronal degeneration, apoptosis, anti-inflammatory or antioxidative enzymes, or immune cells. In conclusion, single-dose intralesional administration of NPD1 had brain tissue sparing effects after focal penetrating TBI, which may be beneficial in preventing brain tissue damage, making NPD1 a potential candidate for further clinical applications. Exact mechanisms of action could not be determined and it is possible that continuous or multiple administration regimens may increase efficacy in sequential preclinical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jocn.2019.03.032DOI Listing

Publication Analysis

Top Keywords

focal penetrating
12
intralesional administration
8
brain injury
8
penetrating tbi
8
npd1
6
brain
5
rats
5
tbi
5
brain tissue
4
tissue saving
4

Similar Publications

Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.

View Article and Find Full Text PDF

Fungal keratitis is a severe ocular infection caused by pathogenic fungi, leading to potential vision loss if untreated. Current antifungal treatments face limitations such as low solubility, poor corneal penetration, and limited therapeutic options. This study aimed to develop a thermosensitive in situ gel incorporating ketoconazole nanoparticles (NPs) to enhance drug solubility, stability, and antifungal activity.

View Article and Find Full Text PDF

Background: Thymoquinone (TQ) is found in the seeds of Nigella sativa. It has immunomodulatory, antibacterial, anti-inflammatory, antioxidant, astringent, antifungal, and antihistaminic properties, making it a highly valuable compound of interest. However, the use of it as a therapeutic drug is highly challenging because of its poor solubility, low bioavailability, and short-term stability.

View Article and Find Full Text PDF

The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity.

View Article and Find Full Text PDF

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!